P1149 [NOIP 2008 提高组] 火柴棒等式
题目描述
给你 n n n 根火柴棍,你可以拼出多少个形如 A + B = C A+B=C A+B=C 的等式?等式中的 A A A、 B B B、 C C C 是用火柴棍拼出的整数(若该数非零,则最高位不能是 0 0 0)。用火柴棍拼数字 0 ∼ 9 0\sim9 0∼9 的拼法如图所示:
注意:
- 加号与等号各自需要两根火柴棍;
- 如果 A ≠ B A\neq B A=B,则 A + B = C A+B=C A+B=C 与 B + A = C B+A=C B+A=C 视为不同的等式( A , B , C ≥ 0 A,B,C\geq0 A,B,C≥0);
- n n n 根火柴棍必须全部用上。
输入格式
一个整数 n ( 1 ≤ n ≤ 24 ) n(1 \leq n\leq 24) n(1≤n≤24)。
输出格式
一个整数,能拼成的不同等式的数目。
输入输出样例 #1
输入 #1
14
输出 #1
2
输入输出样例 #2
输入 #2
18
输出 #2
9
说明/提示
【输入输出样例 1 解释】
2 2 2 个等式为 0 + 1 = 1 0+1=1 0+1=1 和 1 + 0 = 1 1+0=1 1+0=1。
【输入输出样例 2 解释】
9 9 9 个等式为
0 + 4 = 4 0+4=4 0+4=4、 0 + 11 = 11 0+11=11 0+11=11、 1 + 10 = 11 1+10=11 1+10=11、 2 + 2 = 4 2+2=4 2+2=4、 2 + 7 = 9 2+7=9 2+7=9、 4 + 0 = 4 4+0=4 4+0=4、 7 + 2 = 9 7+2=9 7+2=9、 10 + 1 = 11 10+1=11 10+1=11、 11 + 0 = 11 11+0=11 11+0=11。
noip2008 提高第二题
代码内容
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=2e3+10;
ll num[]={6,2,5,5,4,5,6,3,7,6};
ll a[N];
int main()
{
ll n;
cin>>n;
a[0]=6;
for(ll i=1;i<=N;i++)
for(ll j=i;j;j/=10)
a[i]+=num[j%10];
ll ans=0;
for(ll i=0;i<=1000;i++)
for(ll j=0;j<=1000;j++)
{
if(a[i]+a[j]+a[i+j]+4==n) ans++;
}
cout<<ans<<endl;
return 0;
}