P1069 [NOIP 2009 普及组] 细胞分裂
题目描述
Hanks 博士是 BT(Bio-Tech,生物技术)领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。
Hanks 博士手里现在有 N N N 种细胞,编号从 1 ∼ N 1 \sim N 1∼N,一个第 i i i 种细胞经过 1 1 1 秒钟可以分裂为 S i S_i Si 个同种细胞( S i S_i Si 为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入 M M M 个试管,形成 M M M 份样本,用于实验。Hanks 博士的试管数 M M M 很大,普通的计算机的基本数据类型无法存储这样大的 M M M 值,但万幸的是, M M M 总可以表示为 m 1 m_1 m1 的 m 2 m_2 m2 次方,即 M = m 1 m 2 M = m_1^{m_2} M=m1m2,其中 m 1 , m 2 m_1,m_2 m1,m2 均为基本数据类型可以存储的正整数。
注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 4 4 4 个细胞,Hanks 博士可以把它们分入 2 2 2 个试管,每试管内 2 2 2 个,然后开始实验。但如果培养皿中有 5 5 5 个细胞,博士就无法将它们均分入 2 2 2 个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。
为了能让实验尽早开始,Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入 M M M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。
输入格式
第一行,有一个正整数 N N N,代表细胞种数。
第二行,有两个正整数 m 1 , m 2 m_1,m_2 m1,m2,以一个空格隔开,即表示试管的总数 M = m 1 m 2 M = m_1^{m_2} M=m1m2。
第三行有 N N N 个正整数,第 i i i 个数 S i S_i Si 表示第 i i i 种细胞经过 1 1 1 秒钟可以分裂成同种细胞的个数。
输出格式
一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。
如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数 − 1 -1 −1。
输入输出样例 #1
输入 #1
1
2 1
3
输出 #1
-1
输入输出样例 #2
输入 #2
2
24 1
30 12
输出 #2
2
说明/提示
【输入输出样例 #1 说明】
经过 1 1 1 秒钟,细胞分裂成 3 3 3 个,经过 2 2 2 秒钟,细胞分裂成 9 9 9个,……,可以看出无论怎么分裂,细胞的个数都是奇数,因此永远不能分入 2 2 2 个试管。
【输入输出样例 #2 说明】
第 1 1 1 种细胞最早在 3 3 3 秒后才能均分入 24 24 24 个试管,而第 2 2 2 种最早在 2 2 2 秒后就可以均分(每试管 144 / 24 1 = 6 144 / {24}^1 = 6 144/241=6 个)。故实验最早可以在 2 2 2 秒后开始。
【数据范围】
对于 50 % 50 \% 50% 的数据,有 m 1 m 2 ≤ 30000 m_1^{m_2} \le 30000 m1m2≤30000。
对于所有的数据,有 1 ≤ N ≤ 10000 1 \le N \le 10000 1≤N≤10000, 1 ≤ m 1 ≤ 30000 1 \le m_1 \le 30000 1≤m1≤30000, 1 ≤ m 2 ≤ 10000 1 \le m_2 \le 10000 1≤m2≤10000, 1 ≤ S i ≤ 2 × 10 9 1 \le S_i \le 2 \times {10}^9 1≤Si≤2×109。
NOIP 2009 普及组 第三题
代码内容
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e4+10;
ll m1,m2,n,ans=2e9;
ll s[N];
ll p[N],a[N],cnt;
void get(ll n)
{
for(ll i=2;i<=n;i++)
{
if(n%i==0)
{
p[++cnt]=i;
while(n%i==0)
{
a[cnt]++;
n/=i;
}
}
}
if(n!=1)
{
cnt++;
p[cnt]=n;
a[cnt]=1;
}
}
ll calc(ll n)
{
ll t=0;
for(ll i=1;i<=cnt;i++)
{
ll k=0;
while(n%p[i]==0)
{
n/=p[i];
k++;
}
if(!k) return 2e9;
t=max(t,(a[i]*m2+k-1)/k);
}
return t;
}
int main()
{
cin>>n>>m1>>m2;
get(m1);
for(ll i=1;i<=n;i++)
{
cin>>s[i];
ans=min(ans,calc(s[i]));
}
if(ans==2e9) cout<<-1<<endl;
else cout<<ans<<endl;
return 0;
}