大撒币
时间限制:1秒 空间限制:256M
网页链接
牛客tracker
牛客tracker & 每日一题,完成每日打卡,即可获得牛币。获得相应数量的牛币,能在【牛币兑换中心】,换取相应奖品!助力每日有题做,丰盈牛币日益多!

题目描述
Alice 和 Bob 玩一个在矩形桌子上的放置硬币的游戏,如图所示:

游戏开始时,有一张长为 a a a、宽为 b b b 的矩形桌子,以及无限数量个半径为 r r r 的硬币。玩家轮流操作,每次操作可以任选桌子上一个位置放置一枚硬币,然后进行判定:
-
如果此次操作放置的硬币与桌子上已有的任何一个硬币重叠(不包括相互接触),或者硬币的任何点位于的桌子边界之外,则立即判定进行该轮操作的玩家输掉游戏。
-
如果此次操作放置的硬币不与桌子上已有的任何一个硬币重叠(可以相互接触),并且硬币的任何点位于的桌子边界之内,则本次操作合法,交替到对方进行下一步操作。
A l i c e Alice Alice 想知道,如果自己先手,且自己和 B o b Bob Bob 都采取最优策略,最终谁能获胜?
输入描述:
输入包含一行三个空格分隔的整数 a , b , r ( 1 ≦ a , b , r ≦ 1 0 9 ) a,b,r (1≦a,b,r≦10^9) a,b,r(1≦a,b,r≦109) ,分别表示桌子的长、宽以及硬币的半径。
输出描述:
如果 A l i c e Alice Alice 在最优策略下能够赢得游戏,请输出 A l i c e Alice Alice ;否则输出 B o b Bob Bob 。
示例1
输入:
5 5 2
输出:
Alice
说明:
在第一个示例中,桌子只能放一个盘子。先手玩家放一个盘子,后手玩家无法放置而输掉。
示例2
输入:
6 7 4
输出:
Bob
说明:
在第二个示例中,桌子太小了,甚至连一个盘子都放不下。所以先手玩家在没有进行任何操作的情况下就输了。
解题思路
该问题核心是通过数值比较判定结果,输入矩形的两条边长 a 、 b a、b a、b 和半径 r r r 后,判断若两倍半径( 2 r 2r 2r )超过 a a a 或超过 b b b(即圆的直径超出矩形任意一边的长度),则输出 " B o b Bob Bob " ;若 2 r 2r 2r 同时不超过 a a a 和 b b b (圆的直径可完全容纳于矩形内),则输出" A l i c e Alice Alice ";该思路无需复杂计算,仅通过两次简单的大小比较即可完成判定,时间复杂度为 O ( 1 ) O(1) O(1) ,能高效处理任意合理范围的输入数值,直接根据核心条件精准输出对应的结果,适配题目隐含的输入规模要求。
代码内容
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pii;
const ll p=1e9+7;
const ll N=1e5+10;
int main()
{
ll a,b,r;
cin>>a>>b>>r;
if(2*r>a||2*r>b) cout<<"Bob"<<endl;
else cout<<"Alice"<<endl;
return 0;
}
764

被折叠的 条评论
为什么被折叠?



