数据结构初阶(4)——二叉树

目录

1.树概念及结构

1.1树的概念

1.2 树的相关概念

1.3 树的表示

 2.二叉树概念及结构

2.1概念

2.2 特殊的二叉树:

2.3 二叉树的性质

2.4 二叉树的存储结构

3.二叉树的顺序结构及实现

3.1二叉树的顺序结构

​编辑 3.2 堆的概念及结构

3.3 堆的实现

3.2.1 堆向下调整算法

3.2.2堆的创建

3.2.3 建堆时间复杂度 

3.2.4 堆的插入

3.2.5 堆的删除

3.2.6 堆的代码实现及应用(建堆,排序,TOP-K问题)

4.二叉树链式结构的实现

4.1 前置说明

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

4.3 结点个数以及高度等

4.3.1计算节点个数:

4.3.2叶子结点个数:

4.3.3树的高度:

4.3.4第K层节点个数:

 4.3.5查找值为X的节点:

4.4二叉树基础oj练习 

4.4.1 965. 单值二叉树

4.4.2 100. 相同的树

4.4.3​​ 144. 二叉树的前序遍历

4.4.4 572. 另一棵树的子树 

4.4.5 KY11 二叉树遍历


1.树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点称为根结点,根结点没有前驱结点

除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

因此,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构 

1.2 树的相关概念

结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6

叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等结点为叶结点

非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等结点为分支结点

双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:

A是B的父结点

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点

兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点

树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6

结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;

树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点

结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{
 struct Node* firstChild1; // 第一个孩子结点

 struct Node* pNextBrother; // 指向其下一个兄弟结点

 DataType data; // 结点中的数据域

};

 2.二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 由一个根结点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树 注意:对于任意的二叉树都是由以下几种情况复合而成的:

注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2 特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3 二叉树的性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点.

2. 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是2^h-1.

3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2,则有n0=n2+1.

4. 若规定根结点的层数为1,具有n个结点的满二叉树的深度,h= . (ps: 是log以2为底,n+1为对数)

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点

2. 若2i+1,左孩子序号:2i+1,2i+1>=n否则无左孩子

3. 若2i+2,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.4 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树

2. 链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。  

        

3.二叉树的顺序结构及实现

3.1二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

 3.2 堆的概念及结构

如果有一个关键码的集合K = {k0,k1,k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: ki<=k2*i+1且 ki<=k2*i+2(ki>=k2*i+1且ki>=k2*i+2 ) i = 0,1,2…,则称为小堆(或大堆)。将根结点最大的堆叫做最大堆或大根堆,根结点最小的堆叫做最小堆或小根堆。

堆的性质:

1.堆中某个结点的值总是不大于或不小于其父结点的值;

2.堆总是一棵完全二叉树。

3.3 堆的实现

3.2.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根结点开始的向下调整算法可以把它调整 成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整

3.2.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算 法,把它构建成一个堆。根结点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子结点的 子树开始调整,一直调整到根结点的树,就可以调整成堆。

3.2.3 建堆时间复杂度 

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的 就是近似值,多几个结点不影响最终结果):

 因此:建堆的时间复杂度为O(N)。

3.2.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

3.2.5 堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

3.2.6 堆的代码实现及应用(建堆,排序,TOP-K问题)

Heap.h

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>
typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

void Swap(HPDataType* p1, HPDataType* p2);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(HPDataType* a, int n, int parent);

void HPInit(HP* php);
void HPDestroy(HP* php);
void HPPush(HP* php, HPDataType x);
void HPPop(HP* php);
HPDataType HPTop(HP* php);
bool HPEmpty(HP* php);

Heap.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"
void HPInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = php->capacity = 0;
}
void HPDestroy(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}
void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
void HPPush(HP* php, HPDataType x)
{
	assert(php);
	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, newcapacity * sizeof(HPDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);
}
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] < a[child])
			++child;
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else {
			break;
		}
	}
}
void HPPop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}
HPDataType HPTop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	return php->a[0];
}
bool HPEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

tset.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"
void TestHeap1()
{
	int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,332,66,222,33,7,1,66,3333,999 };
	HP hp;
	HPInit(&hp);
	for (int i = 0; i < sizeof(a) / sizeof(int); i++)
		HPPush(&hp, a[i]);
	int i = 0;
	while (!HPEmpty(&hp)) {
		printf("%d ", HPTop(&hp));
		HPPop(&hp);
	}
	printf("\n");
	//找到最大的前k个
	/*
	int k=0;
	scanf("%d",&k);
	while(k--)
	{
	printf("%d ",HPTop(&hp));
	HPPop(&hp);
	}
	printf("\n")
	*/
	HPDestroy(&hp);
}
//堆排序
//冒泡排序
void HeapSort(int* a, int n)
{
	//降序,建小堆
	//升序,建大堆
	//第一种建堆
	/*
	for(int i=1;i<n;i++)
	AdjustUp(a,i);
	*/
	//第二钟建堆
	for(int i =(n - 1 - 1)/ 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}
void TestHeap2()
{
	int a[] = { 4,2,8,1,5,6,9,7,2,7,9 };
	HeapSort(a, sizeof(a) / sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); i++)
	{
		printf("%d ", a[i]);
	}
}
int main()
{
	TestHeap2();
	return 0;
}

4.二叉树链式结构的实现

4.1 前置说明

二叉树是:

1. 空树

2. 非空:根结点,根结点的左子树、根结点的右子树组成的。

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的结点进行相应的操作,并且每个结点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历 是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。

2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。

3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。 

前序遍历:

void PreOrder(BTNode* root)
{
    if(root==NULL)
    {
    printf("N ");
    return;
    }
    printf("%d ",root->data);
    PreOrder(root->left);
    PreOrder(root->right);
}

中序遍历:

void InOrder(BTNode* root)
{
    if(root==NULL)
    {
    printf("N ");
    return;
    }
    InOrder(root->left);
    printf("%d ",root->data);
    InOrder(root->right);
}

4.3 结点个数以及高度等

4.3.1计算节点个数:

int TreeSize(BTNode* root)
{
    static int size=0;
    if(root==NULL)
    return 0;
    else
    ++size;
    TreeSize(root->left);
    TreeSize(root->right);
    return size;
}

错误:

 

正确:

int size=0;
int TreeSize(BTNode* root)
{
    if(root==NULL)
    return 0;
    else
    ++size;
    TreeSize(root->left);
    TreeSize(root->right);
    return size;
}

最简洁:

int TreeSize(BTNode* root)
{
    return root==NULL?0:TreeSize(root->left)+TreeSize(root->right)+1;
}

4.3.2叶子结点个数:

int TreeLeafSize(BTNode* root)
{
    if(root->left==NULL&&root->right==NULL)
    return 1;
    return TreeLeafSize(root->left)+TreeLeafSize(root->right);
}

4.3.3树的高度:

int TreeHeight(BTNode* root)
{
    if(root==NULL) 
    return 0;
    int leftHeight=TreeHeight(root->left);
    int rightHeight=TreeHeight(root->right);
    
    return leftHeight>rightHeight?leftHeight+1:rightHeight+1;
}

4.3.4第K层节点个数:

int TreeLevelKSize(BTNode* root,int k)
{
    if(root==NULL) return 0;
    if(k==1) return 1;
    return TreeLevelKSize(root->left,k-1)+TreeLevelKSize(root->right,k-1);
}

 4.3.5查找值为X的节点:

BTNode* TreeFind(BTNode* root,BTDataType x)
{
    if(root==NULL) return NULL;
    if(root->data==x) return root;
    BTNode* ret1=TreeFind(root->left,x);
    if(ret1) return ret1;
    BTNode* ret2=TreeFind(root->right,x);
    if(ret2) return ret2;
    return NULL;
}

4.4二叉树基础oj练习 

4.4.1 965. 单值二叉树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
bool isUnivalTree(struct TreeNode* root) {
    if(root==NULL) return true;
    if(root->left&&root->left->val!=root->val)
    return false;
    if(root->right&&root->right->val!=root->val)
    return false;
    return isUnivalTree(root->left)&&isUnivalTree(root->right);
}

4.4.2 100. 相同的树

bool isSameTree(struct TreeNode* p,struct TreeNode* q)
{
    if(p==NULL&&q==NULL) return true;
    if(p==NULL||q==NULL) return false;
    if(p->val!=q->val) return false;
    return isSameTree(p->left,q->left)&&isSameTree(p->right,q->right);
}

4.4.3​​ 144. 二叉树的前序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int TreeSize(struct TreeNode* root)
{
    return root==NULL?0:TreeSize(root->left)+TreeSize(root->right)+1;
}
void preOrder(struct TreeNode* root,int* a,int* pi)
{
    if(root==NULL)
    {
        return ;
    }
    a[(*pi)++]=root->val;
    preOrder(root->left,a,pi);
    preOrder(root->right,a,pi);
}
int* preorderTraversal(struct TreeNode* root, int* returnSize) {
    *returnSize=TreeSize(root);
    int* a=(int*)malloc(sizeof(int)*(*returnSize));
    int i=0;
    preOrder(root,a,&i);
    return a;
}

4.4.4 572. 另一棵树的子树 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
bool isSameTree(struct TreeNode* p,struct TreeNode* q)
{
    if(p==NULL&&q==NULL) return true;
    if(p==NULL||q==NULL) return false;
    if(p->val!=q->val) return false;
    return isSameTree(p->left,q->left)&&isSameTree(p->right,q->right);
}

bool isSubtree(struct TreeNode* root, struct TreeNode* subRoot){
    if(root==NULL) return false;
    if(root->val==subRoot->val&&isSameTree(root,subRoot))
    return true;
    return isSubtree(root->left,subRoot)||isSubtree(root->right,subRoot);
}

4.4.5 KY11 二叉树遍历

#include <stdio.h>
struct TreeNode {
      char val;
      struct TreeNode *left;
      struct TreeNode *right;
};
struct TreeNode* CreateTree(char* a,int* pi)
{
    if(a[*pi]=='#')
    {
        (*pi)++;
        return NULL;
    }
    struct TreeNode* root=(struct TreeNode*)malloc(sizeof(struct TreeNode));
    root->val=a[(*pi)++];
    root->left=CreateTree(a,pi);
    root->right=CreateTree(a,pi);
    return root; 
}
void InOrder(struct TreeNode* root)
{
    if(root==NULL) return;
    InOrder(root->left);
    printf("%c ",root->val);
    InOrder(root->right);
}
int main() {
    char a[100];
    scanf("%s",a);
    int i=0;
    struct TreeNode* root=CreateTree(a,&i);
    InOrder(root);
    return 0;
}

1. 什么是二叉树二叉树是一种树形结构,其中每个节点最多有两个子节点。一个节点的左子节点比该节点小,右子节点比该节点大。二叉树通常用于搜索和排序。 2. 二叉树的遍历方法有哪些? 二叉树的遍历方法包括前序遍历、中序遍历和后序遍历。前序遍历是从根节点开始遍历,先访问根节点,再访问左子树,最后访问右子树。中序遍历是从根节点开始遍历,先访问左子树,再访问根节点,最后访问右子树。后序遍历是从根节点开始遍历,先访问左子树,再访问右子树,最后访问根节点。 3. 二叉树的查找方法有哪些? 二叉树的查找方法包括递归查找和非递归查找。递归查找是从根节点开始查找,如果当前节点的值等于要查找的值,则返回当前节点。如果要查找的值比当前节点小,则继续在左子树中查找;如果要查找的值比当前节点大,则继续在右子树中查找。非递归查找可以使用栈或队列实现,从根节点开始,每次将当前节点的左右子节点入栈/队列,直到找到要查找的值或者栈/队列为空。 4. 二叉树的插入与删除操作如何实现? 二叉树的插入操作是将要插入的节点与当前节点的值进行比较,如果小于当前节点的值,则继续在左子树中插入;如果大于当前节点的值,则继续在右子树中插入。当找到一个空节点时,就将要插入的节点作为该空节点的子节点。删除操作需要分为三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点。删除叶子节点很简单,只需要将其父节点的对应子节点置为空即可。删除只有一个子节点的节点,需要将其子节点替换为该节点的位置。删除有两个子节点的节点,则可以找到该节点的后继节点(即右子树中最小的节点),将其替换为该节点,然后删除后继节点。 5. 什么是平衡二叉树? 平衡二叉树是一种特殊的二叉树,它保证左右子树的高度差不超过1。这种平衡可以确保二叉树的查找、插入和删除操作的时间复杂度都是O(logn)。常见的平衡二叉树包括红黑树和AVL树。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西阳未落

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值