
国创
文章平均质量分 66
我想做的国创项目,顺便以后工作的时候能写进简历里边
小熊要努力刷题!
这个作者很懒,什么都没留下…
展开
-
国创——基于Unity3D和MediaPipe构建虚拟人物驱动系统
以下是一个基于Unity3D和MediaPipe构建虚拟人物驱动系统的基本概念和简化的Python示例代码框架。请注意,这只是一个基础示例,实际应用中可能需要更多的完善和调整。原创 2024-10-01 14:37:39 · 990 阅读 · 0 评论 -
国创——基于深度学习的实时姿态识别算法
在Unity3D中接收数据并生成三维图像需要编写C#脚本等操作,这超出了纯Python的范畴,但基本的通信和数据准备是在Python中完成的。- 上述关于Kinect部分的代码只是一个非常简化的示例,实际与Kinect设备交互获取准确数据需要深入研究Kinect SDK的使用方法。- 在Unity3D中,根据接收到的深度数据和彩色图像数据创建三维模型或者对已有的三维模型进行纹理映射和位置调整等操作。- 将获取到的图像帧转换为模型所需的格式,例如RGB格式(MediaPipe要求输入为RGB图像)。原创 2024-10-01 14:45:15 · 816 阅读 · 0 评论 -
国创——实现集成自然语言生成、文本到语音转换相关技术
如学习率、批次大小、训练轮数等。原创 2024-10-01 14:31:57 · 412 阅读 · 0 评论 -
国创——基于分离表示的人脸图像生成技术
根据用户的个性化需求,对分离得到的形状和纹理表示进行调整。- 在DFGA框架的几何形状生成模块中,根据输入数据(可能是经过预处理的图像特征等),使用特定的算法或模型生成人脸的几何形状。- 分离表示旨在将人脸图像分解为不同的组件,如几何形状(面部结构)、皮肤纹理(颜色、细节等)等表示形式。- 将生成的几何形状和皮肤纹理进行融合,得到最终的个性化人脸图像或者视频帧(如果是从视频序列输入)。- 定义DFGA框架中的各个模块,如数据加载模块、几何形状生成模块、皮肤纹理生成模块、融合模块等。原创 2024-10-01 14:20:13 · 1204 阅读 · 0 评论 -
国创——深度Q学习算法
深度Q - 学习是一种强化学习算法,用于解决马尔可夫决策过程(Markov Decision Processes,MDP)中的最优策略问题。在这种情况下,虚拟人物作为智能体(agent),在环境(environment)中通过一系列的动作(action)来最大化累积奖励(reward)。- 它基于Q - 学习算法,使用深度神经网络(Deep Neural Network,DNN)来近似Q - 函数(Q - function)。Q - 函数表示在给定状态(state)下采取某个动作的预期长期奖励。原创 2024-10-01 14:11:20 · 1112 阅读 · 0 评论 -
国创——基于深度条件扩散模型的零样本文本驱动虚拟人
基于深度条件扩散模型的零样本文本驱动虚拟人生成方法的具体代码实现可以分为两个主要阶段:条件人体生成和迭代纹理细化。原创 2024-10-01 10:38:32 · 422 阅读 · 0 评论 -
国创——StyleGAN模型训练和生成虚拟人脸
定义StyleGAN的生成器和判别器模型。StyleGAN的生成器和判别器通常使用卷积神经网络(CNN)来实现。nn.Tanh()原创 2024-10-01 10:20:03 · 483 阅读 · 0 评论 -
国创——VR虚拟陪伴
2.功能实现:在用户等待就诊或无聊时,可以启动VR虚拟陪伴功能,与虚拟人物进行聊天、唱歌等互动,缓解用户的紧张情绪。的方法生成虚拟人物的形象。的虚拟人物驱动系统。这些方法能够生成逼真的人脸表情和身体动作,提高虚拟人物的交互性和真实感。,从单张图片或视频序列中生成个性化的人脸几何形状和皮肤纹理,进一步提高虚拟人物的个性化程度。,使虚拟人物能够通过试错学习完成特定任务,从而实现更自然的人机交互。的虚拟人脸生成技术,都是生成高质量虚拟人物形象的有效方法。根据用户的喜好和需求进行定制,提供个性化的陪伴服务。原创 2024-10-01 10:30:13 · 1160 阅读 · 0 评论