国创——深度Q学习算法

1. 深度Q学习(Deep Q - Learning)算法概述

- 深度Q - 学习是一种强化学习算法,用于解决马尔可夫决策过程(Markov Decision Processes,MDP)中的最优策略问题。在这种情况下,虚拟人物作为智能体(agent),在环境(environment)中通过一系列的动作(action)来最大化累积奖励(reward)。

- 它基于Q - 学习算法,使用深度神经网络(Deep Neural Network,DNN)来近似Q - 函数(Q - function)。Q - 函数表示在给定状态(state)下采取某个动作的预期长期奖励。

2. 深度Q学习算法的具体实现步骤

- 环境定义

- 确定虚拟人物所处的环境,包括状态空间(所有可能的状态集合)、动作空间(所有可能的动作集合)和奖励机制(根据动作和状态转换给予奖励)。

- 神经网络构建

- 使用Python中的深度学习框架(如TensorFlow或PyTorch)构建一个深度神经网络。这个网络将输入状态,输出每个动作的Q - 值估计。

- 例如,在PyTorch中:


import torch

import torch.nn as nn

import torch.nn.functional as F


class DQN(nn.Module):

    def __init__(self, input_size, output_size):

        super(DQN, self).__init__()

        self.fc1 = nn.Linear(input_size, 128)

        self.fc2 = nn.Linear(128, 128)

        self.fc3 = nn.Linear(128, output_size)



    def forward(self, x):

        x = F.relu(self.fc1(x))

        x = F.relu(self.fc2(x))

        return self.fc3(x)

- 经验回放(Experience Replay)

- 创建一个经验回放缓冲区(通常是一个队列或列表)来存储智能体的经验。经验是一个四元组(state,action,reward,next_state)。

class ReplayBuffer:

    def __init__(self, capacity):

        self.capacity = capacity

        self.buffer = []

        self.position = 0



    def push(self, state, action, reward, next_state):

        if len(self.buffer) < self.capacity:

            self.buffer.append(None)

        self.buffer[self.position]=(state, action, reward, next_state)

        self.position = (self.position + 1) % self.capacity



    def sample(self, batch_size):

        return random.sample(self.buffer, batch_size)



    def __len__(self):

        return len(self.buffer)







- 训练过程

- 初始化Q - 网络( q_network )和目标Q - 网络( target_q_network ,初始参数与 q_network 相同)。

- 在每个时间步:

- 选择一个动作:根据当前状态和Q - 网络,可以使用 epsilon - greedy 策略选择动作。 epsilon - greedy 策略以概率 epsilon 随机选择动作,以概率 1 - epsilon 选择具有最高Q - 值的动作。

- 执行动作,获得奖励和下一个状态。

- 将经验(state,action,reward,next_state)存储到经验回放缓冲区。

- 从经验回放缓冲区中随机采样一批经验。

- 计算目标Q - 值:对于每个采样的经验,目标Q - 值 y_j 的计算如下:

- 如果下一个状态是终止状态(例如任务完成或失败),则 y_j = reward_j 。

- 否则, y_j = reward_j+ gamma * max_{a'} Q(s'_{j}, a'; \theta^{-}) ,其中 gamma 是折扣因子(通常在0到1之间), theta^{-} 是目标Q - 网络的参数。

- 计算损失:使用均方误差(MSE)损失函数,计算预测Q - 值( q_network(state) )和目标Q - 值( y_j )之间的损失。

- 优化Q - 网络:使用优化器(如Adam)根据损失反向传播更新Q - 网络的参数。

- 定期更新目标Q - 网络的参数(例如,每C步将 target_q_network 的参数更新为 q_network 的参数)。

3. 完整的深度Q学习算法示例代码(使用PyTorch和一个简单的虚拟环境示例)


 

import torch

import torch.nn as nn

import torch.nn.functional as F

import random

import numpy as np


# 定义Q - 网络

class DQN(nn.Module):

    def __init__(self, input_size, output_size):

        super(DQN, self).__init__()

        self.fc1 = nn.Linear(input_size, 128)

        self.fc2 = nn.Linear(128, 128)

        self.fc3 = nn.Linear(128, output_size)



    def forward(self, x):

        x = F.relu(self.fc1(x))

        x = F.relu(self.fc2(x))

        return self.fc3(x)



# 经验回放缓冲区

class ReplayBuffer:

    def __init__(self, capacity):

        self.capacity = capacity

        self.buffer = []

        self.position = 0



    def push(self, state, action, reward, next_state):

        if len(self.buffer) < self.capacity:

            self.buffer.append(None)

        self.buffer[self.position]=(state, action, reward, next_state)

        self.position = (self.position + 1) % self.capacity



    def sample(self, batch_size):

        return random.sample(self.buffer, batch_size)



    def __len__(self):

        return len(self.buffer)

4.虚拟环境示例(简单的网格世界,这里只是示例,实际需要根据具体任务定义)

class SimpleEnvironment:

    def __init__(self):

        self.state = np.array([0, 0])

        self.goal = np.array([4, 4])


    def step(self, action):

        # 动作:0 - 上,1 - 下,2 - 左,3 - 右

        if action == 0:

            self.state[0] = max(self.state[0] - 1, 0)

        elif action == 1:

            self.state[0] = min(self.state[0] + 1, 4)

        elif action == 2:

            self.state[1] = max(self.state[1] - 1, 0)

        elif action == 3:

            self.state[1] = min(self.state[1] + 1, 4)



        reward = -1

        if np.array_equal(self.state, self.goal):

            reward = 10

            done = True

        else:

            done = False



        return self.state, reward, done





# 深度Q - 学习训练

def train_dqn():

    input_size = 2  # 状态空间维度(这里是简单的2D坐标)

    output_size = 4  # 动作空间维度(4个方向)

    gamma = 0.99

    epsilon_start = 1.0

    epsilon_end = 0.01

    epsilon_decay = 1000

    learning_rate = 0.001

    batch_size = 32

    buffer_capacity = 1000

    target_update = 10



    q_network = DQN(input_size, output_size)

    target_q_network = DQN(input_size, output_size)

    target_q_network.load_state_dict(q_network.state_dict())

    optimizer = torch.optim.Adam(q_network.parameters(), lr = learning_rate)

    replay_buffer = ReplayBuffer(buffer_capacity)



    env = SimpleEnvironment()



    num_episodes = 1000

    for episode in range(num_episodes):

        state = env.state

        state = torch.FloatTensor(state)

        epsilon = epsilon_start - (epsilon_start - epsilon_end) * (episode / epsilon_decay)

        done = False

        while not done:

            if random.random() < epsilon:

                action = random.randint(0, output_size - 1)

            else:

                q_values = q_network(state)

                _, action = torch.max(q_values, 0)

                action = action.item()



            next_state, reward, done = env.step(action)

            next_state = torch.FloatTensor(next_state)

            replay_buffer.push(state, action, reward, next_state)

            state = next_state



            if len(replay_buffer) >= batch_size:

                batch = replay_buffer.sample(batch_size)

                states, actions, rewards, next_states = zip(*batch)

                states = torch.stack(states)

                actions = torch.LongTensor(actions).unsqueeze(1)

                rewards = torch.FloatTensor(rewards).unsqueeze(1)

                next_states = torch.stack(next_states)



                q_pred = q_network(states).gather(1, actions)

                q_next = target_q_network(next_states).max(1)[0].unsqueeze(1)

                target_q = rewards + gamma * q_next

                loss = F.mse_loss(q_pred, target_q)



                optimizer.zero_grad()

                loss.backward()

                optimizer.step()



        if episode % target_update == 0:

            target_q_network.load_state_dict(q_network.state_dict())





if __name__ == "__main__":

    train_dqn()



5.注意

实际应用中需要根据虚拟人物的具体任务来定义复杂的环境、状态、动作和奖励机制

---> 在将深度Q - 学习应用于虚拟人物交互时,

需要将虚拟人物的感知信息作为状态输入

虚拟人物的各种交互行为作为动作输出,并根据人机交互的目标设计合理的奖励机制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值