动态规划问题 -- 路径模型(下降路径最小和)

动态规划分析问题五步曲

不清楚动态规划分析问题是哪关键的五步的少年们可以移步到
链接: 动态规划算法基础
这篇文章非常详细的介绍了动态规划算法是如何分析和解决问题的

题目概述

链接: 下降路径最小和在这里插入图片描述

  1. 状态表示(题目要求+自己的经验)
    本题状态dp[i][j] :表示到第i位置j位置下降路径最小和
  1. 状态转移方程推导
    找到网格中一个位置,分析身边元素的状态
    发现对于任意位置,正上方,正上方左一个格子
    正上方右一个格子,可以到达该位置
    得出状态表示 dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1])) + matrix[i-1][j-1]
    在这里插入图片描述
  1. 初始化(防止越界+结合状态表示初始化)
    当我们在最右边或最左边的时候,就会越界选择初始化
    在这里插入图片描述
    因此为了防止越界,扩容dp表1行和2列
    为了防止选择无意义的值,把其初始化为 0x3f3f3f3f (在动态规划中,0x3f3f3f3f是一个足够大的无意义值)在这里插入图片描述
  1. 填表顺序(分析要填i位置前一个依赖状态的位置)
    dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1])) + matrix[i-1][j-1]
    显然是从上到下填表(从左到右和从右到左无所谓)
  1. 返回值(由题目要求来)
    由于我们可以从网格底部的任意单元方格出这个网格,所以应该返回所有底部网格的最小值

代码编写

有了动态规划五步曲我们就可以写出非常优雅的代码了

int minFallingPathSum(vector<vector<int>>& matrix) {
        int defaults = 0x3f3f3f3f;
        int m = matrix.size() , n = matrix[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+2));
        for(int i = 1 ; i <= m ; i++)
            dp[i][0] = dp[i][n+1]  = defaults;

        for(int i = 1 ; i <= m ; i++)
            for(int j = 1 ; j <= n ; j++)
            dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1])) + matrix[i-1][j-1];

        int ret = INT_MAX;
        for(int j = 1 ; j <= n ; j++)
        ret = min(ret,dp[m][j]);

        return ret;
    }

少年,今天你又进步了一点点哟,明天继续加油吧
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值