《路径规划和决策算法--Python卷》
文章平均质量分 88
本专栏深入探讨了现代路径规划与决策算法在各领域的应用与实践。讲解及动态路径规划和导航网格路径规划等新兴算法的深入研究,读者将深入了解这些算法的原理、实现步骤以及在实际应用中的案例。
码农三叔
学编程20年,乐于奉献,一往无前
展开
-
(11-4-03)基于SLAM的自主路径导航系统:路径规划(3)
此文件实现了多个功能函数,包括全局变量的初始化、移动基地客户端、坐标转换函数、距离计算函数、旋转函数、前往目标函数、路径跟随函数、订阅里程计和地图信息的回调函数、地图转换为图像函数以及发布路径点函数。RRT(Rapidly-exploring Random Tree,快速探索随机树)算法是一种用于路径规划的基于树结构的算法,通过在自由空间中随机生成点,并将这些点逐渐连接起来形成树结构,以便找到起点到目标点的可行路径。在指定的地图上生成随机点并逐步连接,最终找到起点到目标点的可行路径。原创 2024-08-09 17:24:06 · 1068 阅读 · 0 评论 -
(11-4-02)基于SLAM的自主路径导航系统:路径规划(1)
(3)下面代码实现了基于A*算法的路径规划功能,核心功能是A_STAR函数,用于在给定网格地图上计算从起始位置到目标位置的最优路径。订阅了来自激光传感器和里程计的数据,根据接收到的目标位置参数进行路径规划,并通过控制机器人的运动来导航至目标位置。该节点在 ROS 框架中运行,通过订阅机器人的激光雷达和里程计信息,实时更新机器人的位置和地图信息,并根据新的目标点进行路径规划和路径跟踪。(2)下面这段代码实现了感知部分的功能,包括了多个功能函数,这些函数共同实现了机器人感知环境并在RVIZ中进行可视化的功能。原创 2024-08-07 15:40:11 · 957 阅读 · 0 评论 -
(11-4-01)基于SLAM的自主路径导航系统:路径规划(1)
通过传感器获取的环境信息,机器人在地图上进行自主导航,以达到指定目标点的目的。路径规划算法可以根据不同的SLAM方法进行选择,包括gmapping、cartographer、hector、karto、frontier_exploration等,用户可以根据需要选择合适的方法进行路径规划。整个项目通过ROS的launch文件进行配置和启动,可视化部分使用RViz工具实时展示机器人的运动轨迹和地图信息,为用户提供了一个方便直观的界面来监控和调试路径规划的效果。同时,节点会打印距离信息和控制指令以进行调试。原创 2024-08-07 14:35:53 · 482 阅读 · 0 评论 -
(11-3-02)基于SLAM的自主路径导航系统:障碍物和边界检测——检测本地障碍物和边界
文件local_rrt_detector.cpp用于检测本地的障碍物和边界,并根据检测结果发布目标点。通过订阅地图和RViz点击点,实现了随机采样、最近点查找、障碍物检测和边界识别等功能,最终发布探索目标和可视化数据,以便机器人在当前位置附近规划安全路径和探索目标。通过这些功能,文件实现了本地的RRT路径规划算法,用于在机器人当前位置附近规划安全路径和探索目标。原创 2024-08-05 16:30:00 · 353 阅读 · 0 评论 -
(11-3-01)基于SLAM的自主路径导航系统:障碍物和边界检测——检测全局障碍物和边界
文件global_rrt_detector.cpp实现了一个 ROS 节点,用于检测全局的障碍物和边界,并根据检测结果发布目标点。然后,它根据检测到的结果发布检测到的边界点,以及下一步的探索目标点,以便进行路径规划或其他后续操作。在本项目中,文件global_rrt_detector.cpp和文件local_rrt_detector.cpp实现了ROS节点,用于实现路径规划和障碍物检测功能。通过类似RRT的方法,它们生成路径点,并检测障碍物以避免碰撞,从而实现了障碍物和边界检测的功能。原创 2024-08-05 15:45:00 · 486 阅读 · 0 评论 -
(11-2)基于SLAM的自主路径导航系统:公用文件
(1)文件mtrand.h定义了一个名为MTRand_int32的类,实现了Mersenne Twister伪随机数生成器,以及派生类MTRand、MTRand_closed、MTRand_open和MTRand53,分别用于生成不同范围的双精度浮点数。在本项目中,公用文件负责实现一系列方法和类的声明、原型和定义,这些方法和类用于实现随机数生成、向量运算等功能,这些功能在自主探索和路径规划算法中被用到。具体来说,这些文件定义了用于生成随机浮点数、计算向量之间的距离、查找最近点、检查障碍物等功能的方法和类。原创 2024-08-05 11:17:01 · 368 阅读 · 0 评论 -
(11-1)基于SLAM的自主路径导航系统:背景介绍+项目介绍
随着自动驾驶技术的快速发展和普及,自动驾驶系统已经成为了现代交通领域的热点话题之一。这些系统不仅能够提高交通效率和安全性,还能够为用户提供更加便捷、舒适的出行体验。路径规划作为自动驾驶系统中至关重要的一环,扮演着引导车辆沿着安全、高效的路线行驶的关键角色。在传统的驾驶模式中,人们需要依靠经验和地图等信息来做出决策,但是在自动驾驶系统中,路径规划算法能够通过实时获取的环境信息和预先设定的目标,自动计算出最优的行驶路线,从而实现自动驾驶车辆的智能导航和路径跟踪。原创 2024-08-02 15:45:43 · 461 阅读 · 0 评论 -
(10-3-05)智能行为决策算法:基于自动驾驶大模型的车辆轨迹预测系统(5)数据增强
接着,函数从这两个数据集中随机选择一个样本,显示了原始图像以及应用数据增强后的图像。(3)创建了一个包含不同数据增强配置的字典aug_dict,其中包括'Original'(原始图像)、'Cutout'(遮挡法)、'CoarseDropout'(粗放法遮挡)和'GridDropout'(网格法遮挡)。(1)通过引入Albumentations库的别名A,并更改了配置字典中的raster_size和pixel_size,将其设置为[500, 500]和[0.25, 0.25],以便进行更好的可视化。原创 2024-08-02 11:30:29 · 643 阅读 · 0 评论 -
(10-3-04)智能行为决策算法:基于自动驾驶大模型的车辆轨迹预测系统(4)推理
会发现由 pixel_size 定义的栅格化过程会存在一些固有的不准确性,每个历史位置、车道和其他代理都被编码为像素,如果栅格的 pixel_size = .5,应该期望每个预测位置的每个方向有 .5/4 的平均误差,这可以通过使用较小的 pixel_size 来解决这个问题。(3)绘制了六幅图像,每幅图像的Raster尺寸不同。通过循环遍历不同的Raster尺寸(sizes列表),调用sample_dataset函数获取对应Raster尺寸的图像样本,并在图中显示,如图10-8所示。原创 2024-08-01 16:45:00 · 1454 阅读 · 0 评论 -
(10-3-03)智能行为决策算法:基于自动驾驶大模型的车辆轨迹预测系统(3)PyTorch训练
在每个迭代中,获取一个batch的数据,通过前向传播计算损失,然后进行反向传播和优化器的更新。同时,定义了使用 Adam 优化器(学习率为1e-3)和之前定义的损失函数 pytorch_neg_multi_log_likelihood_batch 进行模型的训练。(2)创建一个名为 LyftModel 的PyTorch模型类,基于预训练的ResNet架构,用于自动驾驶车辆的运动预测。(3)创建函数 forward,定义了一个前向传播过程,用于在训练过程中计算模型的损失。原创 2024-08-01 16:00:00 · 881 阅读 · 0 评论 -
(10-3-02)智能行为决策算法:基于自动驾驶大模型的车辆轨迹预测系统(2)EDA数据探索
随后,从更新后的数据集中获取了索引为 50 的样本数据 sample。最后,通过 draw_trajectory 函数在卫星图像上绘制了目标轨迹,并使用 Matplotlib 显示了包含目标轨迹的图像,如图10-5所示。这个数据集将用于训练模型,其中包含了智能驾驶汽车的信息以及相关的场景数据,为进一步的模型训练和预测提供了必要的输入。(7)通过将配置文件中的地图类型设为 "py_semantic",使用相关数据集创建了一系列语义地图中车辆运动轨迹的图像,并通过动画展示这些图像,提供了对车辆行为的可视化。原创 2024-08-01 15:15:00 · 705 阅读 · 0 评论 -
(10-3-01)智能行为决策算法:基于自动驾驶大模型的车辆轨迹预测系统(1)
本项目使用开源的Lyft Level 5 Autonomous Vehicle数据集,通过加载、理解、可视化、抽象化数据,构建并训练了一个基于PyTorch的卷积神经网络(LyftModel),并实现了对自动驾驶场景中车辆轨迹的预测。通过数据处理、模型构建和训练,项目提供了全面的解决方案,包括数据增强和天气效果的引入,以提高模型性能。最终,通过模型推断和预测,实现了对未来车辆轨迹的准确预测,为自动驾驶领域的实际应用提供了实用性指导。本项目的实现步骤如下所示。原创 2024-08-01 09:56:51 · 932 阅读 · 0 评论 -
(10-2-03)智能行为决策算法:常用的智能行为决策算法(3)-------规则引擎与决策树
请看下面的例子,假设一辆自动驾驶汽车在城市道路上行驶,规则引擎可能会根据交通信号和速度限制自动调整车速。同时,决策树算法可能会分析周围车辆的行为模式,预测它们可能的行驶路径,并决定是否安全地进行超车或保持当前车道。规则引擎是一种软件系统,它使用一组定义明确的规则来处理信息,实现复杂的决策制定。在自动驾驶系统中,规则引擎和决策树算法是两种关键技术,它们共同协助系统进行决策和控制车辆行为。决策树是一种监督学习算法,用于分类和回归任务。实例文件jue.py的具体实现代码如下所示。原创 2024-07-31 16:19:22 · 350 阅读 · 0 评论 -
(10-2-02)智能行为决策算法:常用的智能行为决策算法(2)-------强化学习
强化学习是一种机器学习方法,其核心思想是通过代理程序与环境的交互学习最优行为策略,以最大化累积奖励。在强化学习中,代理程序通过观察环境的状态,并选择动作来影响环境,从而学习如何在面对不同状态时做出最优的决策。和强化学习相关的关键概念包括:常见的强化学习算法包括:强化学习在自动驾驶中具有重要的应用,主要体现在以下几个方面:总体来说,强化学习为自动驾驶系统提供了一种灵活和高效的方法,能够在动态和复杂的环境中进行学习和优化,从而改善驾驶决策的精度和适应性。请看下面的例子,功能是使用强化学习中的Q-learning原创 2024-07-31 11:26:32 · 1187 阅读 · 0 评论 -
(10-2-01)智能行为决策算法:常用的智能行为决策算法-------马尔可夫决策过程(MDP)
例如下面的例子实现了一个简单的自动驾驶场景,车辆在一个网格地图上行驶,每个格子代表一个状态,车辆可以选择向上、向下、向左或向右移动(动作)。绘制了一个5*5的网格可视化图,其中绿色圆圈表示起点,红色圆圈表示终点,黑色方块表示障碍物。在实际应用中,智能行为决策算法在自动驾驶系统中各有其独特的优势和应用场景,通过合理组合和优化,能够有效提升自动驾驶的安全性、可靠性和效率。MDP的目标是找到一个策略(Policy),使得在给定时间范围内(或无限时间内)的累积奖励最大化。图10-1 绘制的可视化图。原创 2024-07-30 15:37:17 · 1024 阅读 · 0 评论 -
(10-1)智能行为决策算法:智能行为决策算法简介
路径规划是自动驾驶系统中的关键部分,它不仅涉及到选择最优的行驶路线,还需要确保行驶的安全性和效率。智能行为决策算法在自动驾驶路径规划中扮演着至关重要的角色,它们帮助自动驾驶系统在复杂和动态的交通环境中做出合理、安全和高效的决策。原创 2024-07-30 11:33:20 · 451 阅读 · 0 评论 -
(9-3)其他路径规划算法:DWA算法
DWA算法通过实时地调整机器人的速度和角速度,使其适应动态环境,具有实时性和适应性的优势,常用于移动机器人的导航和路径规划。1基本概念速度空间和角速度空间:DWA算法将机器人的运动空间分为线速度(v)和角速度(ω)两个维度的空间,分别代表机器人在直线和旋转方向上的运动。运动窗口(Dynamic Window):机器人在速度空间和角速度空间内存在一个运动窗口,表示可行的速度和角速度组合。该窗口考虑了机器人的物理限制、传感器信息和环境条件。原创 2024-07-29 17:19:23 · 1227 阅读 · 0 评论 -
(9-2)其他路径规划算法:LQR算法
LQR是一个强大的控制算法,它在理论和实际应用中都有广泛的应用,尤其在工程控制领域。和LQR算法相关的基本概念和操作如下所示。系统模型:LQR适用于线性系统,其动态方程可以表示为状态方程和输出方程。系统的状态用向量表示,控制输入用向量表示。状态方程:输出方程:y(t)Cx(t)Du(t)其中,x(t)是状态向量,u(t)是控制输入向量,D是矩阵。性能指标:LQR算法通过最小化一个二次型的性能指标来实现最优控制。性能指标通常定义为状态和控制输入的加权和的平方和:其中,Q和R是权重矩阵。原创 2024-07-29 15:32:31 · 991 阅读 · 0 评论 -
(9-1)其他路径规划算法:PRM算法
PRM 算法的关键思想是通过在配置空间中概率性地采样点,并在可连接的点之间建立边,以构建机器人可能的运动路径。这使得算法更具适应性,能够处理复杂的环境和高维配置空间。实现PRM 算法的基本步骤如下所示。(1)节点采样:在配置空间中随机采样一组节点,这些节点表示机器人可能的位置。(2)碰撞检测:对于每个采样得到的节点,进行碰撞检测,排除那些位于障碍物内的节点,以确保路径不会穿过障碍物。(3)连接节点:对于没有碰撞的节点对,通过局部路径规划算法(如直线运动)尝试直接连接它们。原创 2024-07-29 11:06:12 · 894 阅读 · 0 评论 -
(8-6-05)优先级遍历(Priority-based Search)算法:基于tkinter的多算法路径规划程序(5)
接着,它再次随机选择另一个城市索引 `index2`,直到满足以下两个条件之一:`index1` 不等于 `index2`,或者 `(x1, y1)` 不在 `neighbours` 中。(8)函数paint用于绘制搜索得到的路径,其参数包括起始节点 `start`、搜索得到的目标节点 `point`、队列或栈的最大大小 `max_element` 以及弹出的节点数 `pops`。在搜索过程中,它会调用`add_neighbours`函数来添加节点的相邻节点,并在添加节点后继续搜索。原创 2024-07-26 16:52:46 · 841 阅读 · 0 评论 -
(8-6-04)优先级遍历(Priority-based Search)算法:基于tkinter的多算法路径规划程序(4)
在搜索过程中,它会调用`add_neighbours`函数来添加节点的相邻节点,并根据具体的搜索算法对堆栈中的节点进行排序。最后,函数返回搜索得到的路径的距离、步数、堆栈的最大大小、弹出的节点数以及搜索所用的时间。最后,函数返回搜索得到的路径的距离、步数、堆栈的最大大小、弹出的节点数以及搜索所用的时间。(3)函数append_to_stack用于将一个新的点添加到堆栈中,并根据指定的算法索引计算并设置新点的启发式函数值,代价函数值和总代价函数值,然后将其添加到堆栈中,并更新堆栈的顶部索引。原创 2024-07-26 15:31:35 · 876 阅读 · 0 评论 -
(8-6-03)优先级遍历(Priority-based Search)算法:基于tkinter的多算法路径规划程序(3)
如果用户选择创建城市,则会检查城市的数量是否达到了设定的城市总数,如果没有达到,则根据用户点击的位置创建城市,并更新城市数量。然后,它会检查用户点击的位置是否在某个已创建的城市范围内,如果是,则将该城市添加到已选择的城市列表中。它接收城市的坐标 `(x, y)`,然后在该位置创建一个填充颜色为 `self.c_color` 的椭圆代表城市,并在其上方创建一个标签显示城市的名称。它接受两个城市的坐标 `(x1, y1)` 和 `(x2, y2)`,以及它们在城市列表中的索引 `fr` 和 `to`。原创 2024-07-26 15:21:50 · 348 阅读 · 0 评论 -
(8-6-02)优先级遍历(Priority-based Search)算法:基于tkinter的多算法路径规划程序(2)
随后,它遍历先前保存的连接列表,为每对连接的城市之间创建一条线,并在连接线的中点添加连接的距离文本。然后,如果该城市被找到,它会将要移动的城市索引设置为找到的城市索引,并删除该城市的当前位置的椭圆形和标签,并查找与该城市相关联的连接线。接下来,当用户再次在画布上点击时,该方法会在新位置创建城市的椭圆形和标签,并更新该城市的坐标信息。如果找到了城市,它会删除该城市的椭圆形和标签,并调整城市列表和连接线列表以反映删除的城市。它通过迭代现有城市的坐标,并计算新城市与每个现有城市之间的距离,来判断是否发生重叠。原创 2024-07-25 16:15:00 · 920 阅读 · 0 评论 -
(8-6-01)优先级遍历(Priority-based Search)算法:基于tkinter的多算法路径规划程序(1) 背景介绍+功能模块
路径规划是计算机科学中的一个重要领域,涉及在图形结构中寻找从起点到目标点的最佳路径。这个领域的研究和应用涉及到许多不同的领域,包括人工智能、运输规划、无人驾驶等。针对路径规划问题,人们开发了许多不同的算法,每种算法都有其特定的优点和局限性,因此在不同的场景中可能会选择不同的算法来解决问题。基于这样的背景,本项目开发了一个路径搜索算法演示程序,旨在帮助用户理解和比较不同路径搜索算法的工作原理和性能。通过该程序,用户可以在图形界面中创建城市和连接,并选择不同的路径搜索算法来查找从起点到终点的最佳路径。原创 2024-07-25 15:30:00 · 326 阅读 · 0 评论 -
(8-5)优先级遍历(Priority-based Search)算法:广度优先搜索(Breadth First Search)算法
广度优先搜索(Breadth First Search,BFS)的基本思想是从起始节点开始,逐层地向外扩展搜索,直到找到目标节点或者遍历完所有可达节点。其核心思想包括如下所示的关键步骤:(1)从起始节点开始:*BFS算法从一个起始节点开始,将其放入一个队列中,作为待访问的节点之一。(2)逐层扩展:在每一轮搜索中,BFS先访问当前层级的所有节点,然后再访问下一层级的所有节点。这保证了先访问离起始节点近的节点,然后逐层向外扩展。(3)标记已访问节点:在访问一个节点时将其标记为已访问,以避免重复访问。原创 2024-07-25 11:17:06 · 960 阅读 · 0 评论 -
(8-4)优先级遍历(Priority-based Search)算法:深度优先搜索(Depth First Search)算法
深度优先搜索(Depth First Search,DFS)是一种经典的图遍历算法,用于在图中搜索或遍历节点。DFS属于一种盲目搜索算法,没有启发式信息的辅助,而是通过深度优先的方式探索图中的节点。1. 基本思想从起始节点开始,访问一个节点后立即探索它的邻居节点,深入到最深的节点,直到到达最末端。当无法再继续深入时(即当前节点没有未访问的邻居节点),回溯到上一个节点,继续深度优先搜索其他分支。重复这个过程,直到遍历到所有节点或者达到搜索终止条件。2. 实现方式。原创 2024-07-24 16:24:34 · 1191 阅读 · 0 评论 -
(8-3-02)优先级遍历(Priority-based Search)算法:Uniform Cost Search算法的基本思想
在代码的末尾,使用load_graph_from_file从JSON文件中加载加权图,并使用uniformCostSearch函数寻找从伦敦到阿伯丁的最低成本路径,并通过show_weighted_graph函数可视化加权图。在上述代码的每个城市的值字典中,键是目标城市的名称,值是一个包含"weight"键的字典,表示到目标城市的距离。每个城市都有一个键值对,其中键是城市名称,值是一个字典,表示从当前城市到其他城市的距离。这种数据结构可以被用来构建一个图,其中城市是节点,距离是边,用来解决路径规划问题。原创 2024-07-24 15:43:06 · 1059 阅读 · 0 评论 -
(8-3-01)优先级遍历(Priority-based Search)算法:Uniform Cost Search (均匀代价搜索)算法
与广度优先搜索类似,它也是一种逐层扩展搜索,但是不同之处在于,均匀代价搜索考虑了路径的代价,以确保找到的路径是最短的。均匀代价搜索算法的优先队列中的排序是基于路径代价的,因此它总是选择当前路径代价最小的节点进行扩展,从而保证找到的路径是最短的。与广度优先搜索不同,均匀代价搜索不仅考虑节点之间的距离,还考虑到了经过的路径的代价。与广度优先搜索不同的是,均匀代价搜索会考虑到路径的代价,以确保找到的路径是最短的。你的目标是找到迷宫中隐藏的宝藏,宝藏的位置在地图的右下角(即数组的最后一个元素)。原创 2024-07-24 11:20:30 · 1321 阅读 · 0 评论 -
(8-2-02)优先级遍历(Priority-based Search)算法:Best-First Search (最佳优先搜索)算法(2)寻找两个城市之间的最短路径
在程序中,根据这些坐标信息构建了城市对象,并根据城市之间的距离关系构建了相邻城市的信息,用于最佳优先搜索算法中。首先读取城市的坐标信息和相邻关系,然后根据用户输入的起始城市和目标城市,在城市之间进行搜索,找到一条最短路径,并输出路径上经过的城市序列。(4)下面的代码用于从文件Adjacencies.txt中读取数据,通过解析文件中的内容,计算并存储了相邻城市之间的距离,并将结果存储在名为cityDict的字典中的adjacentCities属性中,以便后续的路径搜索算法使用。类 city中的成员如下所示。原创 2024-07-23 17:02:09 · 1096 阅读 · 0 评论 -
(8-2)优先级遍历(Priority-based Search)算法:Best-First Search (最佳优先搜索)算法(1)
在搜索过程中,最佳优先搜索不保留之前访问的节点,因此可能会陷入无限循环或者无法找到解的情况,但它通常能够以较快的速度找到一个接近最优解的解。总的来说,最佳优先搜索算法的基本思想是在搜索过程中根据节点的启发式值选择下一个要扩展的节点,以期望能够更快地找到解决方案。(1)定义节点结构:创建一个表示节点的结构体或类,其中包括节点的位置坐标、距离起点的实际代价、到目标节点的启发式值等信息。(4)扩展节点:对于当前节点,根据问题的规则生成所有可能的后继节点,并计算它们的实际代价和启发式值。原创 2024-07-23 16:16:54 · 1411 阅读 · 0 评论 -
(8-1)优先级遍历(Priority-based Search)算法:优先级遍历算法简介
优先级遍历(Priority-based Search)是一种在搜索问题中使用优先级进行节点扩展的方法,它是一类搜索算法的通用名称,其核心思想是在搜索过程中根据优先级规则选择下一个要扩展的节点,以便更快地达到目标状态或者找到最优解。原创 2024-07-23 14:02:50 · 556 阅读 · 0 评论 -
(7-4-05)RRT算法:基于Gazebo仿真的路径规划系统(5)
它通常用于机器人领域中的仿真和控制任务。文件sdf_reader.py实现了一个名为 SDFReader 的类,用于解析包含障碍物信息的 SDF(Simulation Description Format)文件。文件main.py主要实现了从SDF文件中解析出障碍物的位置和大小,并利用RRT、RRT和RRT_FN算法在给定地图上规划路径。通过解析SDF文件,创建了一个地图对象,然后在该地图上使用RRT系列算法寻找从起始点到目标点的路径,并绘制出路径和地图的可视化结果。图7-7 路径规划可视化。原创 2024-07-22 21:33:20 · 464 阅读 · 0 评论 -
(7-4-04)RRT算法:基于Gazebo仿真的路径规划系统(4)
对于在搜索范围内的每个节点,它计算新节点与该节点之间的距离,并检查是否可以通过将这些节点重新连接到新节点来降低其成本。(24)函数steer用于确定从一个给定点(父节点)到另一个给定点(目标节点)的方向,并返回新节点的位置,该位置位于给定长度的边上。(28)函数forced_removal用于从图中删除一个随机的无子节点的节点,它分别接受一个图对象(Graph)、不会被删除的节点的ID以及路径中的节点列表作为输入参数,并返回被删除的节点的ID。它返回从起始节点到根节点的路径列表以及路径的总成本。原创 2024-07-22 11:15:16 · 886 阅读 · 0 评论 -
(7-4-03)RRT算法:基于Gazebo仿真的路径规划系统(3)
(13)函数regrow用于重新生成路径的算法,在尝试重新连接根树和分离树的过程中,根据随机节点生成新节点,并尝试将其连接到最近的节点,直到达到最大迭代次数或重新连接成功。(11)函数check_for_tree_associativity用于检查指定节点是否属于以给定根节点为根的树中,遍历从给定节点到根节点的路径,并返回布尔值,指示该节点是否属于该树。(8)函数valid_path用于验证路径的有效性,并在路径中发现与障碍物碰撞的节点时,删除这些节点及其子节点,然后返回新分离的树的根节点的ID。原创 2024-07-21 17:56:00 · 853 阅读 · 0 评论 -
(7-4-02)RRT算法:基于Gazebo仿真的路径规划系统(2)
该算法通过指定的迭代次数,在图中随机生成节点,并尝试连接到最近的节点,直到达到最大迭代次数或找到路径到达目标节点为止。函数的可选参数允许调整算法的行为,例如允许的最大边长、节点半径、偏向目标节点的程度以及是否实时更新算法过程。该算法通过指定的迭代次数,在图中随机生成节点,并尝试连接到最近的节点,直到达到最大迭代次数或找到路径到达目标节点为止。(2)函数new_node用于生成新的节点,并返回新节点的位置、新节点的ID、最近节点的ID以及新节点与最近节点的距离。函数new_node的具体实现流程如下所示。原创 2024-07-21 16:42:40 · 1102 阅读 · 0 评论 -
(7-4-01)RRT算法:基于Gazebo仿真的路径规划系统(1)
路径规划在自动驾驶和机器人领域具有关键作用,它能够帮助车辆和机器人在复杂的环境中找到最佳的行驶或移动路径,从而实现自主导航和避障功能,提高安全性、效率和舒适性。本项目旨在探索并实现基于路径规划的自动导航系统,适用于自动驾驶和机器人导航领域。在自动驾驶汽车方面,路径规划算法可以帮助车辆规划从起点到目的地的最佳行驶路径,并在行驶过程中动态调整路线,考虑实时的交通情况、道路条件和周围环境的变化。通过合理规划路径,车辆可以避免交通拥堵、减少能源消耗,并且确保行驶安全。原创 2024-07-20 21:14:03 · 897 阅读 · 0 评论 -
(7-3-03)RRT算法:基于pygame的RRT*路径规划系统(3)
在程序运行时,用户可以通过鼠标在屏幕上设置起点、目标点、绘制障碍物等。通过按键触发算法执行,程序会使用RRT算法搜索从起点到目标点的路径,并将搜索过程实时显示在屏幕上。最终,如果找到了一条路径,则将其显示出来,否则提示未找到路径。文件rrt.py实现了RRT(Rapidly-exploring Random Tree)算法的主要逻辑。它通过随机采样生成树状结构,从起点向目标点扩展,直到找到一条从起点到目标点的路径。执行后的效果图如图7-6所示,可视化展示了我们用鼠标设置的地图的路径信息。原创 2024-07-20 19:29:51 · 347 阅读 · 0 评论 -
(7-3-02)RRT算法:基于pygame的RRT*路径规划系统(2)
函数collision通过对线段进行逐步的取样,并检查每个取样点是否位于障碍物上,以确定线段是否与障碍物相交。如果线段与任何障碍物相交则返回 True,否则返回 False。文件drawing.py定义了一个名为drawing的模块,其中包含了一系列用于绘制图形、清除图形、保存图形等操作的函数和变量,这些函数和变量共同组成了一个用于在屏幕上绘制和操作图形的工具集合。文件points_container.py定义了一个名为pointsContainer的类,用于存储二维点并实现查找给定点的最近邻功能。原创 2024-07-19 16:36:43 · 701 阅读 · 0 评论 -
(7-3-01)RRT算法:基于pygame的RRT*路径规划系统(1)
本项目是一个基于Python和Pygame的交互式路径规划器,旨在为自动驾驶和机器人领域提供一个直观、实时的路径规划工具。使用了RRT(Rapidly-exploring Random Tree)算法来搜索从起点到目标点的路径,并通过图形界面实时显示搜索过程。本项目基于RRT算法实现,提供了如下所示的功能模块。基于RRT算法的路径规划模块,能够搜索从起点到目标点的路径。实时更新图形界面模块,以直观的方式展示路径搜索的过程和结果。用户交互操作模块,如设置起点、目标点,绘制障碍物等。原创 2024-07-19 16:32:30 · 1109 阅读 · 0 评论 -
(7-2-04)RRT算法:RRT算法的定义与实现(4)RRT*算法
(10)在下面的代码中,首先创建了一个包含两个矩形障碍物的列表 obstacles,然后初始化了一个 RRT* 算法实例 rrt_star,并设置了起始点 (50, 50) 和目标点 (550, 350),以及障碍物信息。然后,它在图形中添加了每个障碍物的轮廓,并绘制了树的连接关系。例如下面的实例实现了RRT*算法,通过随机扩展树、优化树结构等步骤,用于寻找从起始点到目标点的最优路径。它首先将输入点转换为节点对象,然后计算输入点与树中每个节点的距离,并找到最小距离对应的节点,即最近节点。原创 2024-07-19 11:18:26 · 1065 阅读 · 0 评论