Suppose an array of length n
sorted in ascending order is rotated between 1
and n
times. For example, the array nums = [0,1,2,4,5,6,7]
might become:
[4,5,6,7,0,1,2]
if it was rotated4
times.[0,1,2,4,5,6,7]
if it was rotated7
times.
Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]]
1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
.
Given the sorted rotated array nums
of unique elements, return the minimum element of this array.
You must write an algorithm that runs in O(log n) time.
Example 1:
Input: nums = [3,4,5,1,2] Output: 1 Explanation: The original array was [1,2,3,4,5] rotated 3 times.
Example 2:
Input: nums = [4,5,6,7,0,1,2] Output: 0 Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.
Example 3:
Input: nums = [11,13,15,17] Output: 11 Explanation: The original array was [11,13,15,17] and it was rotated 4 times.
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
- All the integers of
nums
are unique. nums
is sorted and rotated between1
andn
times.
注意:
1.总体思路:先判断出最小值是在左边还是右边,这一点很重要,只要能先想到这个,后面的就很好写了
2.while循环的条件是left<right,不再是left<=right,因为最后left==right,这样会导致死循环
3.int middle=left+(right-left)/2,这是中间索引的通常做法,(而不是简单的用(left+right)/2)避免因left和right过大的时候溢出
4.if(nums[middle]>nums[right]),注意别粗心写成了>nums[left],还找了很久的原因。
5.else{right=middle;},不是right=middle+1;这是为了避免遗漏最小值在middle的情况
6.return的最小值到最后其实就是left对应的值
class Solution {
public:
int findMin(vector<int>& nums) {
int left=0;
int right=nums.size()-1;
while(left<right){
int middle=left+(right-left)/2;
if(nums[middle]>nums[right]){
left=middle+1;
}
else{
right=middle;
}
}
return nums[left];
}
};