153. Find Minimum in Rotated Sorted

Suppose an array of length n sorted in ascending order is rotated between 1 and n times. For example, the array nums = [0,1,2,4,5,6,7] might become:

  • [4,5,6,7,0,1,2] if it was rotated 4 times.
  • [0,1,2,4,5,6,7] if it was rotated 7 times.

Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]] 1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]].

Given the sorted rotated array nums of unique elements, return the minimum element of this array.

You must write an algorithm that runs in O(log n) time.

Example 1:

Input: nums = [3,4,5,1,2]
Output: 1
Explanation: The original array was [1,2,3,4,5] rotated 3 times.

Example 2:

Input: nums = [4,5,6,7,0,1,2]
Output: 0
Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.

Example 3:

Input: nums = [11,13,15,17]
Output: 11
Explanation: The original array was [11,13,15,17] and it was rotated 4 times. 

Constraints:

  • n == nums.length
  • 1 <= n <= 5000
  • -5000 <= nums[i] <= 5000
  • All the integers of nums are unique.
  • nums is sorted and rotated between 1 and n times.

注意:

        1.总体思路:先判断出最小值是在左边还是右边,这一点很重要,只要能先想到这个,后面的就很好写了

        2.while循环的条件是left<right,不再是left<=right,因为最后left==right,这样会导致死循环

        3.int middle=left+(right-left)/2,这是中间索引的通常做法,(而不是简单的用(left+right)/2)避免因left和right过大的时候溢出

        4.if(nums[middle]>nums[right]),注意别粗心写成了>nums[left],还找了很久的原因。

        5.else{right=middle;},不是right=middle+1;这是为了避免遗漏最小值在middle的情况

        6.return的最小值到最后其实就是left对应的值

class Solution {
public:
    int findMin(vector<int>& nums) {
        int left=0;
        int right=nums.size()-1;
        while(left<right){
            int middle=left+(right-left)/2;
            if(nums[middle]>nums[right]){
                left=middle+1;
            }
            else{
                right=middle;
            }
        }
        return nums[left];
    }
};

minimum_rotated_rectangle 是一种常用的计算几何算法,用于计算一个凸多边形的最小外接矩形。这个矩形是能够包含整个凸多边形的最小面积矩形。 在 Python 中,可以使用 OpenCV 库中的 `minAreaRect` 函数来计算一个凸多边形的最小外接矩形。这个函数接受一个包含多边形顶点坐标的 numpy 数组作为输入,返回一个矩形对象,其中包含了最小外接矩形的中心坐标、宽度、高度以及旋转角度等信息。 下面是一个示例代码,演示了如何使用 `minAreaRect` 函数计算一个凸多边形的最小外接矩形: ```python import cv2 import numpy as np # 创建一个凸多边形 points = np.array([(0, 0), (0, 100), (100, 100), (100, 50), (50, 0)]) hull = cv2.convexHull(points) # 计算凸多边形的最小外接矩形 rect = cv2.minAreaRect(hull) # 绘制凸多边形和最小外接矩形 img = np.zeros((200, 200, 3), dtype=np.uint8) cv2.drawContours(img, [hull], 0, (0, 255, 0), 2) box = cv2.boxPoints(rect).astype(np.int32) cv2.drawContours(img, [box], 0, (0, 0, 255), 2) # 显示结果 cv2.imshow('Minimum Rotated Rectangle', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在这个示例代码中,我们首先创建了一个凸多边形,然后使用 `convexHull` 函数计算了凸包,最后使用 `minAreaRect` 函数计算了凸多边形的最小外接矩形,并绘制了结果图像。可以通过修改 `points` 变量中的坐标,来测试不同形状的凸多边形。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值