- 博客(145)
- 收藏
- 关注
原创 Python学习框架
概述全称叫电子计算机, 英文名叫Computer, 俗称叫: 电脑, 简称叫: PC, 就是用来实现存储和计算数据的电子设备.组成计算机硬件 ->遵循"冯·诺依曼体系"计算机软件系统软件: 负责用户和计算机硬件之间交互的桥梁.应用软件: 满足日常生活需求的概述指的是 人 和 计算机之间交互的媒介, 载体. 即: 人 告诉计算机做什么.发展史(高级语言), 简单总结如下:第1代:特点: 面向过程 + 无GC(垃圾回收器)代表: C语言, 唯一一门可以直接和计算机硬件交互的高级语言.
2025-08-20 18:00:47
103
原创 二维图像处理(完整版2)
1. 从应用上分类* 1. 定位* 1. blob分析* 2. 边缘提取* 3. 模板匹配* 2. 测量* 1. 标准目标* 1. 基于区域 - 生成外接(内接)圆、矩形* 2. 基于轮廓 - 拟合* 2. 基于区域的测量算子* 3. 基于轮廓的测量算子* 4. 测量助手* 5. 2D测量* 3. 识别* 1. 一维码* 2. 二维码* 3. OCR* 1. 传统方法* 2. 深度学习* 4. 外观检测* 1. blob* 2. xld* 3. 模板匹配。
2025-08-19 15:43:57
182
原创 从0实现系统设计
3. 操作 HOperatorSet.GetImageSize(ho_Image, out hv_Width, out hv_Height);* 4. 使用 HOperatorSet.ReadImage(out ho_Image, "E:/bmp/card.bmp");HObject和HTuple类型的变量,需要五部曲(定义+实例化+释放+使用+释放)如果共同使用时,需要把前两部定义在全局变量中去,* 2. 释放对象 hv_Width.Dispose();
2025-08-17 19:56:13
101
原创 3.三维点云基础
(从原来的灰度值数组中,定位处比最小灰度值还要小的灰度值位置(找到之后让其索引对应的数值变成1)重新生成一个只有0和1的数组)*(从原来的灰度值数组中,定位处比最大灰度值还要大的灰度值位置(找到之后让其索引对应的数值变成1)重新生成一个只有0和1的数组)** 找出在Lesseq数组序列中元素为1的下标索引序列(可以定位出原来的灰度值数组中不满足条件的索引)** 把筛选序列组合为一个新的序列(所有不满足灰度值条件的索引都合起来)*从拍好顺序的灰度数组中,去除最高的250个索引对应的灰度值。
2025-08-12 16:16:01
79
原创 2.一维码+二维码+字符识别
建议值:‘Document_0-9_NoRej.omc’、‘Document_0-9_Rej.omc’、‘Document_0-9A-Z_NoRej.omc’、‘Document_0-9A-Z_Rej.omc’、‘Document_A-Z+_NoRej.omc’、’ Document_A-Z+_Rej.omc’等…2.识别字符:识别单个字符(do_ocr_single_class_mlp),识别多个字符(do_ocr_multi_class_mlp)
2025-08-11 18:16:54
133
原创 17、原坐标变换和逆变换在实战中用法
您的代码 完全正确且符合原理→ 获取从Pose5坐标系回原始坐标系的变换。→ 将Pose6的结果映射回原始坐标系。本质是坐标系变换的逆向链式乘法,其数学基础是齐次矩阵求逆与乘法,物理意义是坐标系的回退与再映射直接对pose6逆变换无法得到pose7,因为它仅回退到pose5坐标系而非原始坐标系。✅ 正确方法:组合pose5的逆变换与pose6的变换(),其本质是通过矩阵链式乘法实现跨坐标系映射⚠️ 关键原则。
2025-08-02 13:38:22
117
原创 16、pose_comepose和pose_invert详解以及仿射变换
= 先B后A= 先A后B两者的结果因坐标系依赖性和三维变换的非交换性而必然不同。实际编程时需严格按变换逻辑链设计参数顺序,否则会导致位姿错误在 HALCON 中,位姿类型(通过指定)决定了旋转参数的解读方式。位姿 A,类型为gba(标识码0位姿 B,类型为abg(标识码2两者的旋转参数均为(10, 0, 0),但由于旋转顺序不同,其实际旋转过程存在本质差异,但在此特定参数下最终旋转效果相同。
2025-08-01 13:11:09
116
原创 15、点云<—>深度图转换原理
XYZ图像中(R, C)位置的值= 从相机光心出发,穿过像素(R, C)的射线与3D模型交点的世界坐标。映射本质像素坐标(R,C) → 相机射线 → 3D交点 → 世界坐标(X,Y,Z)关键依赖:相机内参(CameraParam)、位姿(Pose)、3D模型几何结构。这种投影机制确保了XYZ图像中的每个像素值都精确对应3D模型表面的一个点,是3D视觉中从模型到2D图像的核心桥梁。
2025-07-30 17:05:16
160
原创 14、distance_object_model_3d算子
distance_to”, 'invert_pose', '方法'、“output_attribute”, 'sampling_dist_abs', 'sampling_dist_rel', 'signed_distances',“store_closest_index”. 但是,如果将相同的 3D 对象模型用于不同的调用 运算符,则上一次调用的结果将被覆盖。auto”, 'false', 'kd-tree', '线性', '积分', '多边形', '原始'、“三角形”, 'true', '体素'
2025-07-29 21:43:02
145
原创 13、select_points_object_model_3d解析
它可用于删除 3D 对象模型中稀疏填充的部分, 例如,通过在 3D 之间平滑创建的异常值或点 表面。.与点连接的所有属性 (例如,多边形或三角形)的调整方式使得 没有引用删除的点。选择 3D 对象模型的点 基于指定的属性。(input_control)object_model_3d(-数组)3D 点集的 3D 点法线的 x 分量。3D 点集的 3D 点法线的 y 分量。3D 点集的 3D 点法线的 z 分量。3D 点集的 2D 映射的行组件。3D 点集的 2D 映射的列分量。缩减的 3D 对象模型的句柄。
2025-07-29 21:33:28
159
原创 12、visualize_object_model_3d动态显示
如果设置为’auto’,则最小属性值映射到LUT的开头,最大属性值映射到LUT的结尾,除非’color_attrib’是’normal_x’、‘normal_y’或’normal_z’。: 设置3D对象模型的颜色。此外,颜色可以指定为RGB三元组,形式为’#rrggbb’,其中’rr’、‘gg’和’bb’分别为’00’和’ff’之间的十六进制数。值:‘none’, ‘&distance’, ‘coord_x’, ‘coord_y’, ‘coord_z’,用户定义的点属性,或任何其他可用的点属性。
2025-07-29 17:26:19
196
原创 11、read_object_model_3d 读取点云
read_object_model_3d 这个Halcon算子中的xyz_map_width这个参数设置的目的就是,把读取的点云数据中每一个点的XYZ坐标,生成一个对应的二维图像,其中图像中的坐标值就对应每一个点的XY坐标,而图像中的灰度值就对应Z坐标??并且根据设置图像宽度参数的大小,会自动根据点云数量的总数计算出长度的大小。假如点云数量的总数与3D相机的分表率得到的总数不一样,则有可能得到的二维图像并不像原来零件的面貌。
2025-07-29 17:08:37
147
原创 十、点云数据中法线、曲率定义
在点云处理中,法线通常是指某个点在局部邻域内的表面切平面的法向量。具体来说,对于点云中的一个点 pp,我们可以选择其周围的若干个点(通常称为邻域),然后通过这些点拟合一个平面。这个平面的法向量就是点 pp 的法线。需要注意的是,法线是一个向量,它垂直于该平面,并且通常被归一化为单位向量。选择点 pp 的邻域点集 NN。使用这些点拟合一个平面,通常使用最小二乘法。计算这个平面的法向量,并将其归一化为单位向量,得到点 pp 的法线。所以,组成该平面的其他点的法线,是通过分别。
2025-07-28 20:48:58
56
原创 九、点云处理中(SVD、PCA、协方差矩阵)关系
负责统计并描述点云在三维空间中的基本分布特性和形状指标。它是一切方向分析的数据基础。担任“结构解码器”。它解剖协方差矩阵,从中挖掘出隐藏的点云主方向骨架(特征向量),重新建立反映点云本质形态的新坐标系 (新XYZ轴),并按重要性排序(特征值)。担任“数学手术大师”或“更健壮的计算替代方案”。虽然其原理不同(直接分解数据),但对点云方向问题(v1,v2,v3)与 PCA效果完全等效—— 其 V矩阵的列即等效于 PCA 求出的新坐标系基方向。它在法向量估计、点云对齐(ICP)等关键任务中表现卓越且稳定。
2025-07-28 20:24:04
384
原创 八、凸包计算convex_hull_object_model_3d
Halcon算子convex_hull_object_model_3d全面解析与工业应用指南。
2025-07-28 17:05:48
124
原创 七、包围盒(AABB、OBB)
AABB (Axis-Aligned Bounding Box) - 与坐标系对齐的快速近似包围盒。OBB (Oriented Bounding Box) - 基于物体实际几何方向的最小包围盒。:OBB计算时间 ≈ 0.001×点数 + 15ms (i7-11800H)
2025-07-28 13:26:22
376
原创 五:prepare_object_model_3d算子
的主要功能是为特定的操作(如基于形状的匹配、分割或距离计算)优化三维对象模型。它通过计算和存储后续操作所需的值,提高处理效率,特别是在多次执行相同操作时。
2025-07-28 12:29:26
92
原创 四、点云平滑smooth_object_model_3d
如果生成的SmoothObjectModel3D用于基于表面的匹配,可能需要这样做,无论是作为create_surface_model中的模型,还是作为find_surface_model中的3D场景,因为在这里,法线的一致方向对于匹配过程非常重要。注意,与所有点的全局参数不同,它是为每个点P计算的,因此使权重函数适应于它的邻域。值列表:“ mls_abs_sigma”,“ mls_force_inwards”,“ mls_kNN”,“ mls_order”,“ mls_relative_sigma”
2025-07-27 18:16:29
95
原创 一、点云拼接(ICP)
是 HALCON 中用于寻找两个 3D 对象模型之间最佳变换的算子。它通过分析两个 3D 对象模型的重叠区域,计算出最佳对齐的变换矩阵。示例在这个示例中,和是两个 3D 对象模型,'matching'是搜索方式,Pose返回的是最佳变换矩阵,Score返回的是匹配得分。参数说明: 3D 对象模型句柄。: 搜索方式,包括'icp'和'matching'两种方式。'icp': 直接进行精定位。'matching': 先执行粗匹配,然后执行精定位。
2025-07-27 12:40:53
87
原创 一、KD树和八叉树
特性KD树八叉树定位静态小数据精准刺客动态大数据并行战士致命优势均匀数据极致速度抗分布不均 + 动态更新 + GPU友好绝不使用的场景激光雷达SLAM/点云流超均匀数学点云行业选择CAD/逆向工程自动驾驶/机器人/三维重建工程师的忠告当你纠结时 ——优先试八叉树!它可能牺牲 5% 的理论峰值性能,但换来了 200% 的工程稳定性。
2025-07-25 13:32:40
969
原创 17.图像滤波+增强
1. 在尽量保留图像细节特征的前提条件下,对图像噪声进行抑制。* 3. 高斯滤波 - 局部小目标。* 2. 中值滤波 - 保留边缘。*滤波器+图像分割方法(动态阈值)* 1. 均值滤波 - 全局。
2025-07-07 18:10:34
75
原创 16.OCR识别
项目需求*1. 提取分类结果* 2. NG*2. 方法* OCR识别*3. 问题点* 1. VLONG和VSHORT字符都是VERY* VLONG- 黑色VERY* VSHORT-蓝色VERY* 解决方案* 1. 彩色图片拆分成3通道的黑白图片* 1. 偏红色系的目标在红色通道下面比较亮* 2. 偏绿色系的目标在绿色通道下面比较亮。
2025-07-07 18:08:34
47
原创 openCV功能
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、视频分析、目标检测、特征提取等领域。
2025-06-29 17:04:59
607
原创 15.OCR训练
find_obj (ImageReduced, Regions, WindowHandle, 0, 160, 500, 5000, Num, Row, Col)函数。使用助手生成训练文件,然后利用训练文件进行识别。
2025-06-24 17:44:40
303
【C++编程基础】C++基础语法详解:涵盖数据类型、运算符、流程控制、数组、函数及指针等内容
2025-04-30
HALCON 手册简体中文版概述.
2025-04-28
机器视觉工业数字相机技术详解:分类、接口标准及性能比较
2025-04-28
机器视觉HALCON三维机器视觉方法介绍:多视角立体视觉与深度测量技术详解
2025-04-28
机器视觉HALCON三维空间定位方法:匹配工具与手眼标定在工业自动化中的应用HALCON软件在
2025-04-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅