39:分类器流程

 第一步   创建支持向量机分类器

create_class_svm (7, 'rbf', KernelParam, Nu, |ClassNames|, 'one-versus-one', 'principal_components', 5, SVMHandle)

第二步  添加样本到分类器里

for ClassNumber := 0 to |ClassNames| - 1 by 1

    *列出目录下的所有文件

    list_files (ReadPath + ClassNames[ClassNumber], 'files', Files)

    *获取后缀为PNG的所有文件

    Selection := regexp_select(Files,'.*[.]png')

    for Index := 0 to |Selection| - 1 by 1

        *读取图像

        read_image (Image, Selection[Index])

        dev_display (Image)

        * 'Add Samples...', -1

        *图像阈值,获取黑色区域

        threshold (Image, Region, 0, 40)

*       calculate_features_define (Region, Features)

        calculate_features_define (Region, Features)

        add_sample_class_svm (SVMHandle, Features, ClassNumber)

    endfor

endfor

* add_samples_to_svm_define(ClassNames, SVMHandle, WindowHandle, ReadPath)

* 关闭窗口

dev_clear_window ()

*第三步  训练支持向量机分类器

disp_message (WindowHandle, 'Training...', 'window', -1, -1, 'black', 'true')

train_class_svm (SVMHandle, 0.001, 'default')

disp_message (WindowHandle, 'Training completed', 'window', -1, -1, 'black', 'true')

disp_continue_message (WindowHandle, 'black', 'true')

stop ()

*第四步 用SVM分类器进行分类

    *读取图像

    read_image (Image, Selection[Index])

    *对图像阈值

    threshold (Image, Region, 0, 40)

    *计算区域的特征值

    calculate_features_define (Region, Features)

    *用SVM分类器进行分类

    classify_class_svm (SVMHandle, Features, 1, Class)

第五步  显示和输出结果

    dev_display (Region)

    disp_message (WindowHandle, 'Classified as:' + ClassNames[Class], 'window', -1, -1, 'black', 'true')

    disp_continue_message (WindowHandle, 'black', 'true') 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值