自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1400)
  • 收藏
  • 关注

原创 零基础入门到精通ai大模型应用开发,ai大模型应用开发(非常详细)收藏我这一篇就够了!

随着大模型技术的飞速发展,我们正站在一个全新的技术前沿,探索着如何将这些强大的工具应用于实际问题的解决。如果你对AI大模型应用开发充满热情,那么你可以读一下这篇文章——一个系统全面的入门指南,专为渴望深入AI世界的你设计。

2025-12-06 19:52:30 1154

原创 AI产品经理入门全攻略:与传统PM的7大差异+大模型学习路径,非常详细收藏我这一篇就够了

AI产品经理与传统产品经理的核心差异在于技术深度和应用场景。AI产品经理需掌握机器学习、深度学习等技术原理,熟悉算法模型评估指标(如准确率、F1分数等),并能将AI技术应用于企业服务场景(如智能客服、风险评估)。其工作流程强调数据收集、模型选型及持续优化,需与算法团队紧密协作。相比之下,传统产品经理更侧重市场连接和用户体验,技术要求较低。随着AI技术发展,AI产品经理需要不断更新技术知识,明确AI能力边界,推动AI产品在企业效率提升中的应用。

2026-01-24 20:40:46 329

原创 LLM-RL训练框架全攻略:四大主流框架横向评测与选型指南

本文深度解析LLM-RL训练框架的技术演进与选型指南。随着AI技术发展,RLHF从辅助手段发展为决定模型能力的核心技术,推动开源框架持续创新。文章对比分析TRL、OpenRLHF、verl和LLaMA Factory四大主流框架,从架构设计(单体集成、Ray分布式、混合引擎三大流派)、性能优化(生成瓶颈突破、多模型协同)和适用场景等维度展开评测。TRL以易用性见长,OpenRLHF通过Ray+vLLM实现高效分布式训练,verl则专注万亿参数模型支持。针对不同规模模型和硬件条件,文章提供选型建议,为开发者应

2026-01-24 20:39:23 144

原创 大模型开发必学:从零开始构建基于上下文工程的Agent后端系统【收藏学习】

本文提出了一种基于上下文工程的Agent后端架构设计方案,将核心模块划分为工具管理、上下文管理、LLM模块和执行器形态四大类。重点阐述了上下文管理作为核心模块的设计思路,包括上下文压缩、裁剪等技术,以及解决上下文污染等问题的系统方法。作者提供了详细的模块实现方案,如LLM服务类、工具定义与管理等,并开源了相关代码仓库和CLI脚手架工具,帮助开发者理解如何通过上下文工程构建Agent系统。该架构强调上下文管理的重要性,同时保持LLM作为核心处理引擎,为Agent开发提供了清晰的技术路径。

2026-01-24 20:38:14 127

原创 图数据库+大模型:GraphRAG如何解决大模型落地难题,让AI真正走进产业

GraphRAG:知识图谱与大模型的融合创新 GraphRAG作为传统RAG的升级方案,通过整合知识图谱与图技术,有效解决大模型面临的"模型幻觉"和"数据孤岛"问题。NebulaGraph通过降低技术门槛和使用成本,推动GraphRAG从科研走向产品化,显著提升了上下文关联性、推理深度与结果可解释性。在运维根因定位等实际案例中,GraphRAG实现了85%的准确率和12倍的效率提升。未来,Graph+AI将推动大模型从孤岛走向知识中枢,从事后分析转向事前预测,真正实现

2026-01-24 20:37:07 154

原创 开发程序员转行至AI大模型开发领域的详细攻略,非常详细收藏我这一篇就够了

本文为程序员提供AI大模型领域转型指南,涵盖数学基础、编程技能、机器学习学习路径等核心内容。详细介绍了深度学习、前沿技术跟踪、面试准备和心态调整等关键环节,并提供了分阶段学习计划,包括系统设计、提示词工程、平台应用开发等实践方向。文章还附赠丰富的学习资源包(104G)和100套商业化方案,帮助开发者从理论到实践全面掌握AI大模型技能,实现职业转型。通过系统化的知识体系构建和实战项目训练,助力程序员顺利过渡到AI领域。

2026-01-21 22:16:42 1152

原创 2025年最值得收藏的AI大模型指南:左手职场,右手AI,有方法有工具

国内AI大模型赛道加速发展,10款主流工具各具特色:DeepSeek擅长代码与科研推理,Kimi支持200万字文本处理,智谱清言专注学术写作,元宝深度整合微信生态,豆包优化短视频电商文案。行业趋势从参数竞赛转向精准合规,在科研、办公、教育等领域形成专业解决方案,为职场人士提供高效AI助手。文章还提供大模型学习资源包,包含104G教程、200本书籍及商业化案例,助力掌握AI时代核心技能。

2026-01-21 22:13:46 448

原创 传统产品经理VS AI产品经理:6大核心差异,助你找准职业方向

本文深入剖析了传统产品经理与AI产品经理的六大核心差异:服务对象(C端大众vs B端企业)、能力模型(全流程多面手vs技术+业务双料专家)、对接部门(全链路协调者vs技术团队亲密战友)、工作重心(用户与商业vs效率与技术)、工作流程(需求驱动vs技术-数据-业务闭环)及数据分析角度(用户行为vs模型效果)。两种岗位无优劣之分,关键看个人适配,但无论选择哪条路,产品经理用产品解决问题、创造价值的核心使命从未改变。

2026-01-21 22:12:37 516

原创 AI智能体从入门到精通:程序员必学的Agent开发实战指南,含LangGraph代码示例,建议收藏

本文深入解析AI智能体的核心概念与实践开发,系统介绍了智能体的定义、三大特征(LLM决策、工具使用、安全边界)及设计三要素(模型/工具/指令)。通过对比传统LLM应用,强调智能体"会做"的本质特性。文章提供了智能体开发的实用判断标准,详细讲解编排模式(单/多智能体系统)和安全护栏体系,并附上基于LangGraph框架的最小可运行示例代码。适合开发者从原理到实践全面掌握智能体开发技能,重点关注任务分解、工具定义及指令配置等关键环节。

2026-01-21 22:11:36 560

原创 Qwen3多模态检索系统:从Embedding到Reranker的完整实践

Qwen团队推出多模态检索系统Qwen3-VL-Embedding与Qwen3-VL-Reranker,通过两阶段架构解决多模态检索难题。Embedding将图文视频统一向量化实现快速召回,Reranker通过交叉注意力进行精准排序。系统提供2B/8B两种规格,支持多语言和量化部署,在MMEB-V2等基准测试中表现优异。开发者可通过双塔架构实现高效召回,再结合单塔模型完成精排,为多模态RAG、电商检索等场景提供完整解决方案。

2026-01-21 22:10:36 581

原创 2026年最火技术岗位:大模型应用开发工程师,收藏学习早转型!非常详细收藏我这一篇就够了

2025年大模型应用开发工程师将成为最热门技术岗位,AI人才缺口预计达400万,大厂薪资高达60K*16薪。本文提供系统学习路线(7大阶段)和免费资源包,包括640套AI报告、经典书籍及实战案例。掌握大模型技术可提升薪资10%-20%,成为全栈工程师。学习路径覆盖初阶应用到商业闭环,帮助快速转型,抓住AI技术红利期。

2026-01-20 20:45:48 703

原创 程序员必学:大模型Prompt Caching实战指南,收藏这篇就够了!

Prompt Caching技术:大模型推理的加速利器 Prompt Caching通过缓存重复内容的KV Cache,显著提升大模型推理效率。该技术可将首次token生成时间缩短至1/8,在RAG、多轮对话等场景中节省50-90%成本。主流模型如OpenAI、Anthropic已应用此技术,开发者可通过模块化提示词设计、语义缓存匹配等方法实现性能优化。研究表明,采用Prompt Caching的RAG系统吞吐量提升7倍,GPU显存占用减少42%,推理成本降低88%,成为大模型应用降本增效的关键方案。

2026-01-20 20:44:31 610

原创 AI产品经理:年薪35-50万的复合型人才,大厂百万激励,程序员/产品经理转型的黄金赛道

AI产品经理成高薪热门岗位,年薪35-50万,技术背景人才转型薪资涨幅达40%。该岗位需兼具业务落地、产品设计和技术理解能力,面临知识体系零散、项目经验缺乏等转型挑战。建议通过评估个人能力、定制学习计划(产品经理补技术、技术人员补产品思维)、分阶段积累实战经验实现转型。大模型应用岗位缺口达47万,系统学习AI技术可快速提升竞争力,提供包括提示词工程、RAG系统等在内的完整学习路径和资料包助您入行。

2026-01-20 20:43:27 537

原创 大模型的三条进化路线:OpenAI、DeepMind、DeepSeek如何重塑AI结构

大模型发展正从追求"聪明度"转向构建稳定的智能结构。OpenAI、DeepMind和DeepSeek分别聚焦行动能力、世界理解和长期记忆三大方向,共同勾勒出"电子脑"的完整架构。技术从业者应关注结构而非参数,理解Agent+Memory+Tool的组合方式,避免被旧认知淘汰。当前是重新理解AI发展方向的窗口期,未来属于能把握智能结构变革的人。

2026-01-20 20:42:19 552

原创 2026年大模型学习路线:从零基础到精通的全面指南_AI大模型应用开发学习路线(2026最新)

本文详细介绍了2025年大模型学习路线,从数学、编程基础开始,逐步深入Transformer模型、预训练技术等核心知识,通过实战项目巩固技能,最后掌握API应用、模型微调与部署等高级技术。文章强调持续学习前沿技术、参与社区交流的重要性,并提供完整的学习资源包,帮助读者从零基础系统掌握大模型技术,实现职业跃迁。

2026-01-18 18:14:05 767

原创 2026年AI发展新主线:从模型到系统,小白到程序员的必学之路

2026年AI发展将迎来重大转型:从"模型时代"迈向"系统时代",核心在于AI的实际应用落地而非单纯追求模型参数提升。主要呈现六大趋势:1)AI从被动应答升级为主动执行的智能体;2)多模态成为基础能力;3)自动化流程具备动态决策能力;4)小模型在特定场景反超大模型;5)量子计算开始发挥辅助作用;6)人类工作角色转向监督决策。AI将不再局限于提供建议,而是直接完成工作任务,这将深刻改变所有行业的工作方式。

2026-01-18 18:12:53 623

原创 AI+时代:程序员必知的就业转型与技能提升指南

本文探讨"人工智能+"如何促进高质量充分就业,从三方面展开:人工智能催生新产业、推动传统行业智能化创造新岗位;通过通识教育、高等教育和终身学习提升劳动者AI素养;赋能人岗匹配、工作执行和交付方式,增强职业安全感、成就感和幸福感,实现智能经济发展与高质量就业的良性循环。

2026-01-18 18:12:00 353

原创 【强烈收藏】大模型转型之路:程序员必备技能与高薪就业指南

摘要: 大模型领域为30+程序员提供了理想的转行方向,市场需求旺盛且薪资涨幅可达10%-20%。文章提出四阶段学习路径:初阶应用(10天)掌握Prompt工程;高阶应用(30天)构建RAG系统;模型训练(30天)学习微调技术;商业闭环(20天)部署与商业化落地。配套学习资源包涵盖案例库、模板及实战指南,助力零基础转型为AI专家,抓住大模型风口机遇。(149字)

2026-01-16 19:46:20 714

原创 值得收藏:RAG技术详解:从原理到实践,让AI回答问题不再瞎编

RAG(检索增强生成)技术通过"先检索后生成"的方式解决AI大模型的幻觉问题。文章以员工手册问答为例,演示RAG三步流程:1)将文档转为知识库;2)检索相关段落;3)生成带引用的回答。案例显示RAG能准确回答"试用期婚假"等政策问题,避免AI臆测。部署RAG系统需文档处理、知识库构建和大模型对接等步骤。该技术使AI回答更精准可靠,特别适合企业知识管理场景。(149字)

2026-01-16 19:45:13 454

原创 大模型工具使用三阶段演进:让AI从“会说“到“能做“的技术路径

大模型工具使用的三种演进模式:循环式工具选择(单轮决策)、计划驱动执行(全局规划并行)和程序化工具编排(代码下沉处理),适用于不同复杂度的任务。循环式灵活但效率低,适合简单查询;计划驱动提升并行效率,适合多步骤任务;程序化编排通过代码处理海量数据,解决上下文爆炸问题。选择取决于任务复杂度、数据规模和实时性要求,需权衡灵活性与效率。

2026-01-16 19:44:11 663

原创 AI+企业办公:8大核心应用场景全解析,从理论到实践助你掌握智能化办公新技能

本文系统解析了AI在企业办公中的8大核心应用场景,包括智能文档处理、演示制作、数据分析、会议管理、流程自动化、知识管理、办公环境优化及人力资源发展。每个场景均涵盖理论基础、实践应用和方法技巧,为企业提供智能化转型全面指导。通过系统化部署AI技术可显著提升办公效率,将员工从机械性工作中解放出来,专注于创造性活动,最终实现组织效能的全面提升。

2026-01-16 19:43:03 666

原创 AI工具实战手册:个人与企业效率提升的四个关键维度

本文分享了作者一年AI实战经验,从建立合理预期、掌握核心工具、学习赋能案例和精通提示词技巧四个维度,帮助读者高效掌握AI工具。作者强调AI不是万能的,但能帮助用户在不熟悉领域快速达到70分水平,实现至少1倍产出提升。文章通过实际案例展示AI如何赋能个人与企业,指出"多用AI"是掌握AI的最佳方式,并提供了精选AI工具资源。同时详细讲解了提示词工程的实践方法,建议通过"找资料-投喂AI-测试出结果"的流程提升AI应用效果。

2026-01-16 19:41:52 615

原创 大模型完整学习路线图:从入门到精通_大模型学习路线(2026最新)

本文提供了大模型学习的七个阶段路线图:1)基础知识准备(数学与编程);2)机器学习基础;3)深度学习入门;4)自然语言处理基础;5)大规模语言模型;6)模型应用;7)持续学习与进阶。每个阶段详细列出了核心知识点和推荐学习资源,帮助学习者系统掌握大模型从理论基础到实际应用的完整知识体系。

2026-01-15 19:47:27 659

原创 AIGNE框架:基于文件系统抽象的大模型上下文工程解决方案

本文提出一种基于Unix"一切皆文件"理念的文件系统抽象架构,用于解决GenAI和智能体系统中的上下文工程问题。该架构包含持久化上下文仓库(历史、内存、临时工作区)和上下文工程流水线(构造器、更新器、评估器),通过AIGNE框架实现。架构设计考虑了GenAI的令牌窗口限制、无状态性等约束,支持人机协同与可验证推理,解决了现有方案碎片化、缺乏可追溯性和治理机制的问题。实验验证了该架构在智能体导航和人机协作场景中的可行性。

2026-01-15 19:45:57 496

原创 《智能体设计模式》21种实战指南+代码示例:从入门到精通构建大模型系统(建议收藏)

《智能体设计模式实战指南》摘要 本书由谷歌工程师Antonio Gulli撰写,系统总结了21种智能体设计模式,涵盖从基础任务处理到复杂多智能体系统构建的全流程。通过LangChain、CrewAI等主流框架的代码示例,为开发者提供实用指导。内容兼顾理论与实战,适合AI工程师、产品经理及技术爱好者,旨在帮助构建更智能可靠的自主系统。随书附赠大模型学习资源包,包含思维导图、书籍手册、视频教程等,助力开发者快速掌握AI大模型应用开发全流程。(148字)

2026-01-15 19:44:55 298

原创 RAG评估方法:优化检索增强生成系统的关键技术(值得收藏)

RAG系统评估方法及工具解析 本文系统介绍了RAG(检索增强生成)系统的评估方法,涵盖检索评估(精确度、召回率、F1分数)和响应评估(忠实度、答案相关性)两大核心指标。评估方法包括人工评估和自动化评估两种形式,重点推荐了Ragas和TruLens两大实用工具: Ragas:提供上下文精度、召回率、忠实度和答案相关性四项指标评估,通过问题、答案、上下文和标准答案四要素进行量化分析 TruLens:评估上下文相关性、忠实度和答案相关性,支持与LangChain等框架集成,提供可视化看板 文章详细解析了各指标的计

2026-01-15 19:43:42 588

原创 大模型如何重塑人才决策:从“拍脑袋用人“到“精准识人“的实战指南

AI人才罗盘:大模型驱动的精准人才决策方案 摘要:AI人才罗盘通过融合大模型与HR专业模型,构建四步智能流程(岗位画像定义、数据向量化、标签体系构建、双模型推荐),将企业人才数据转化为战略资产。该方案有效解决了传统人才管理中的三大痛点:评估主观性、高潜人才发掘难、关键岗位匹配效率低。通过数据驱动的精准推荐,实现内部人才池激活、招聘成本优化和可持续人才梯队建设,推动组织从"经验用人"向"智能识人"的范式升级。典型应用场景包括跨国岗位匹配、高管继任计划及跨职能人才挖掘等。

2026-01-15 19:42:41 651

原创 大模型产品经理学习路线【收藏必看】:从零基础到精通,月薪30K+的AI进阶指南

大模型产品经理学习路线:从零基础到专业人才的90天进阶指南 本文系统梳理了大模型产品经理的培养路径,涵盖五大核心阶段: 基础知识(计算机科学、AI/机器学习原理) 大模型技术(分布式训练、模型优化等) 产品管理(用户研究、商业模式设计) 实战经验(项目全流程参与) 持续提升(行业趋势跟踪、软技能培养) 行业数据显示,国内大模型岗位缺口达47万,初级工程师平均月薪28K+。文章提供分阶段学习计划: 10天掌握初阶应用 30天实现高阶开发 30天完成模型训练 20天构建商业闭环 附赠大厂实战案例库、提示词模板等

2026-01-14 20:35:08 1107

原创 大模型工程师转型攻略:无需985学历,四大核心能力助你轻松入行

大模型工程师门槛并不高,企业更需应用型人才而非算法研究员。本文指出四大核心能力:提示工程、RAG技术、模型微调和工程部署,传统程序员可通过系统学习快速转型。当前正是入局良机,工具成熟、需求旺盛,薪资涨幅显著。多个转型案例证明,工程经验迁移是关键优势,零基础者一个月即可产出可演示项目。学习路线清晰,抓住风口实现职业跃升。

2026-01-14 20:34:24 493

原创 2026年AI产品市场格局:多模态崛起,音乐生成爆发,程序员必看

2026年全球AI市场格局生变:通用AI增长放缓,OpenAI市占率跌破65%,Gemini升至20%;音乐/音频生成成增速最快赛道(Suno占80%份额)。多模态产品崛起,而图像/写作/自动化工具流量下滑。AI原生应用冲击传统平台,解题类教育工具受创严重(Mathway流量-57%),强社区平台仍稳健。编程领域维持双寡头格局(Lovable+Cursor占50%+),视频生成赛道可灵异军突起(市占30%)。搜索引擎格局稳固,Google保持90%+份额。

2026-01-14 20:33:14 612

原创 大模型智能体工程实践:Rock & Roll训练系统的构建与优化【收藏学习】

本文提出智能体学习生态系统(ALE),包含ROLL训练框架、ROCK环境和iFlow CLI工具三层架构。创新性IPA算法基于语义交互块进行信用分配,提升长程训练稳定性。实验表明,基于百万轨迹数据训练的30B参数ROME模型在SWE-bench等基准上接近GPT-5性能。系统还实现了细粒度rollout与异步训练的多路复用机制,显著提升GPU资源利用率。ALE通过"状态-动作-观测-反馈"闭环数据流,支持大规模强化学习迭代,最终准确率提升47.07%,验证了该框架的有效性和稳定性。

2026-01-14 20:32:06 563

原创 智能体反思模式:让AI从“会做“到“做好“的关键技术

智能体反思模式:AI自我优化的关键技术 智能体反思模式是一种让AI对自身输出进行评估并自我纠错的机制,通过"执行-评估-优化"闭环迭代提升输出质量。该模式具有三大核心价值:减少人工修正成本、避免重复犯错、适配复杂场景。典型实现方式采用"生产者-批评者"双模型架构,生产者负责生成内容,批评者专注评估优化。实践要点包括:设定具体评估标准、控制迭代次数、结合记忆功能、平衡质量与效率。通过这种机制,智能体能够从"机械执行"升级为"主动优化&quo

2026-01-14 20:31:13 624

原创 DeepSeek悄悄开源LPLB!MoE训练负载均衡新方案,5行代码搞定,值得收藏学习

LPLB:DeepSeek开源的动态MoE负载均衡方案 摘要:DeepSeek开源了LPLB(Linear Programming Load Balancer),一种针对混合专家模型(MoE)训练的创新型动态负载均衡方案。该方案通过将冗余专家视为带容量边的图结构,利用GPU加速的线性规划算法,在每批训练时(100μs级)动态重新分配token到空闲GPU,有效解决了小批量训练中专家token数剧烈抖动的问题。相比静态EPLB方案,LPLB具有三大优势:1)实时响应每批负载变化;2)支持NVSHMEM和NVL

2026-01-13 17:35:11 480

原创 DeepSeek V4重磅来袭:编程能力或将超越Claude,引领AI新纪元!

DeepSeek将于2月中旬发布V4模型,主打编程能力,目标超越Claude成为编程之王。V4在四大方向实现突破:编程能力、超长上下文代码处理、算法不易衰减、推理能力提升。该模型基于MoE架构、MLA机制和R1强化学习经验,采用创新的mHC算法解决大模型训练不稳定问题。在硬件限制条件下,DeepSeek通过算法优化实现高性能,V4若成功发布将成为AI领域重要里程碑。

2026-01-13 17:34:09 532

原创 大模型转行必看:收藏这份全方位指南,让你入行少走90%弯路,新人应该如何转行大模型赛道

大模型领域四大方向解析:数据、平台、应用与部署 本文针对大模型行业新人提出实用建议,指出常见误区:多数新手盲目选择应用方向,却忽视数据工程师等更易入门的岗位。文章系统分析各方向特点: 数据方向(数据处理/清洗)是转行最佳切入点 平台方向(分布式训练/集群管理)适合工程背景者 应用方向(算法开发)需相关经验支撑 部署方向(推理加速)要求较高工程经验 并提供90天系统学习路径:从提示工程、RAG系统到模型微调与部署,帮助新人高效掌握核心技能,避免职业发展弯路。特别强调数据质量对模型效果的关键作用,建议根据自身背

2026-01-13 17:31:49 1040

原创 AI产品经理必看!大模型转行全攻略,建议马上收藏_想转行做大模型?AI产品经理转行必读指南

AI产品经理转行做大模型的实用指南:从自我评估到技能提升 摘要:本文为AI产品经理转行做大模型提供了系统指导。首先介绍了大模型的特点和优势,强调其对数据、计算资源的高要求。随后提出产品经理转行需具备的5项核心能力:技术理解、数据分析、用户洞察、产品思维和团队协作。文章提供了详细的自我评估框架,并针对不同评估结果给出转行建议。在技能学习方面,推荐了原理学习、应用实践、优劣势分析三个维度的资源和方法,包括经典论文、开源工具和在线平台。最后强调通过目标设定、计划执行和效果评估的系统方法完成转型。

2026-01-13 17:30:53 608

原创 Claude Code Skill神器planning-with-files:解决大模型上下文丢失的终极方案(附安装教程)

开源项目planning-with-files实现Manus风格AI工作流,通过task_plan.md、notes.md和[deliverable].md三个核心文件,帮助AI克服上下文丢失和目标漂移问题。该项目遵循文件作为单一真理来源、状态显式化、上下文极简主义等原则,使AI在复杂任务中保持清晰思路。作为Claude Code Skill安装后,AI能自动维护文件系统,实现思考与行动分离,确保任务可恢复性。开发者可通过简单命令安装该插件,显著提升AI Agent的工作效率和可靠性。

2026-01-13 17:29:54 850

原创 从零开始学大模型:程序员转型指南与AI资源全解析_抓住A_风口,程序员转行的6大黄金方向

文章介绍了程序员转型的六大高薪方向,包括数据分析师、AI工程师、网络安全专家等,强调转型需结合技术趋势与个人优势。同时提供大模型AI学习资源包,含学习路径、调优手册、专家课程和面试真题等,助力程序员掌握AI技术,提升职场竞争力。

2026-01-11 21:58:08 1138

原创 技术沉淀与开源精神:为什么DeepSeek-V4值得期待?收藏这篇就够了

【150字摘要】DeepSeek计划在2026年春节发布V4大模型,延续其春节发布传统(如去年R1模型引发行业震动)。该公司持续深耕底层技术,近期发布86页详实论文展现技术共享精神。V4将重点提升代码生成和复杂逻辑能力,有望超越当前领先的Claude模型。作者认为DeepSeek代表了中国AI掌握核心技术的底气,其开源态度和技术突破正在重塑行业格局,期待V4带来新一轮技术革新。

2026-01-11 21:56:57 610

原创 医学大模型评测新范式:从“知识正确“到“行为可靠“的实战指南

MedAgentBench:医学大模型评测新范式 该研究提出医学大模型评测框架MedAgentBench,突破传统知识准确性评测局限,将模型视为临床系统智能体,重点考察其在虚拟EHR环境中的任务执行能力。研究显示当前模型在复杂医疗工作流中表现不佳,仅能完成简单信息检索,难以胜任多步决策和系统交互任务。这种从静态问答到动态行为评估的转变,更真实反映模型临床应用潜力,为医学AI发展提供了新的评估维度。论文发表于NEJM AI,包含100个真实病历和300个临床任务评测集。

2026-01-11 21:55:47 902

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除