自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

yingzi的技术博客

大数据、算法学习者

  • 博客(434)
  • 资源 (4)
  • 收藏
  • 关注

原创 SpringAI(GA):结构化输出的快速上手+源码解读

原文链接:SpringAI(GA):结构化输出的快速上手+源码解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2将陆续完成如下章节教程。本章是第四章(结构化输出)下的快速上手+源码解读代码开源如下:https://github.com/GTyingzi/spring-ai-tutorial微信推文往届解读可参考:第一章内容SpringAI(GA)的ch

2025-06-08 12:37:22 452

原创 SpringAI(GA):SpringAI下的MCP源码解读

原文链接:SpringAI(GA):SpringAI下的MCP源码解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2将陆续完成如下章节教程。本章是第七章(MCP使用范式)下的SpringAI下的MCP,建议配合SpringAI(GA):MCP源码解读+SpringAI(GA):Tool源码+工具触发链路解读一起理清MCP层面触发工具的全链路代码开源如下

2025-06-07 11:09:02 625

原创 SpringAI(GA):Nacos3下的分布式MCP

你好,我是影子,曾先后在🐻、新能源、老铁就职,现在是一名AI研发工程师,同时作为Spring AI Alibaba开源社区的Committer。:https://github.com/alibaba/spring-ai-alibaba/tree/main,为AI工程贡献力量,解决三个有效issue或提交一个有价值的PR,可免费获得当前SpringAI最新教程的飞书在线版。整理不易,获取更好的观赏体验,可付费获取飞书云文档Spring AI最新教程权限,目前49.9,随着内容不断完善,会逐步涨价。

2025-06-06 11:24:58 817

原创 SpringAI(GA):MCP源码解读

原文链接:SpringAI(GA):MCP源码解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2将陆续完成如下章节教程。本章是第七章(MCP使用范式)下的MCP源码解读代码开源如下:https://github.com/GTyingzi/spring-ai-tutorial微信推文往届解读可参考:第一章内容SpringAI(GA)的chat:快速上手+

2025-06-05 18:00:33 564

原创 SpringAI(GA):Nacos2下的分布式MCP

你好,我是影子,曾先后在🐻、新能源、老铁就职,现在是一名AI研发工程师,同时作为Spring AI Alibaba开源社区的Committer,另外,本人长期维护一套飞书云文档笔记,涵盖后端、大数据系统化的面试资料,可私信免费获取。背景:现阶段 MCP Client 和 MCP Server 是一对一的连接方式,若当前 MCP Server 挂掉了,那么 MCP Client 便不能使用 MCP Server 提供的工具能力。在配置管理处,也能找到我们的 mcp server、tool 的配置信息。

2025-06-04 10:02:06 535

原创 第三章:Tool 源码解读

原文链接:SpringAI(GA):Tool源码+工具触发链路解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2将陆续完成如下章节教程。本章是第三章(tool整合)下的Tool源码解读+工具触发链路解读代码开源如下:https://github.com/GTyingzi/spring-ai-tutorial微信推文往届解读可参考:第一章内容Spring

2025-06-03 09:09:04 364

原创 RAG的ETL Pipeline源码解读

原文链接:SpringAI(GA):RAG下的ETL源码解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2将陆续完成如下章节教程。本章是第六章(Rag增强问答质量)下的ETL-pipeline源码解读代码开源如下:https://github.com/GTyingzi/spring-ai-tutorial微信推文往届解读可参考:第一章内容SpringA

2025-06-02 10:18:07 838

原创 SpringAI(GA):RAG下的ETL快速上手

你好,我是影子,曾先后在🐻、新能源、老铁就职,现在是一名AI研发工程师,同时作为Spring AI Alibaba开源社区的Committer。提取(Extract)、转换(Transform)和加载(Load)框架是《第六章:Rag 增强问答质量》中数据处理的链路,将原始数据源导入到向量化存储的流程,确保数据处于最佳格式,以便 AI 模型进行检索。获取更好的观赏体验,可付费获取飞书云文档Spring AI最新教程权限,目前49.9,随着内容不断完善,会逐步涨价。TokenTextSplitter 切分。

2025-06-01 11:50:59 934

原创 第六章:Rag 增强问答质量

原文链接说明:SpringAI(GA):RAG快速上手+模块化解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2将陆续完成如下章节教程。本章是第六章(Rag增强问答质量)下的快速上手+Rag模块化源码解读代码开源如下:https://github.com/GTyingzi/spring-ai-tutorial以下结合内存向量数据库实现 RAG 的典型

2025-05-31 11:49:59 597

原创 向量数据库源码解读-基础、Redis、ES

原文链接说明:向量数据库源码解读-基础、Redis、ES说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.1将陆续完成如下章节教程。本章是第五章(向量数据库)下的源码解读代码开源如下:https://github.com/GTyingzi/spring-ai-tutorialVector Databases 一般会配合 RAG 使用(第六章:Rag 增强问答

2025-05-30 12:08:44 591

原创 向量数据库-内存、Redis、ES快速上手

你好,我是影子,曾先后在🐻、新能源、老铁就职,现在是一名AI研发工程师。目前新建了一个交流群,一个人走得快,一群人走得远,关注公众号后可获得个人微信,添加微信后备注“交流”入群。另外,本人长期维护一套飞书云文档笔记,涵盖后端、大数据系统化的面试资料,可私信免费获取。向量数据库,查询不同于传统的关系型数据库,执行相似性搜索而不是完全匹配。当给定一个向量作为查询时,向量数据库会返回与查询向量“相似”的向量。这是对应的 json 数据,可以看到只有三条数据,其中 id=1 的数据被删除了。查询已经被过滤的数据。

2025-05-29 13:33:32 608

原创 (增强)基于sqlite、mysql、redis的消息存储

代码已贡献至:https://github.com/springaialibaba/spring-ai-alibaba-examples/pull/238。下的 advisor/advisor-memory-sqlite、advisor-memory-mysql、advisor-memory-redis。以会话“yingzi”发送消息,此时消息存储至 sqllite。以会话“yingzi”发送消息,此时消息存储至 mysql。以会话“yingzi”发送消息,此时消息存储至 redis。

2025-05-28 18:36:04 1384

原创 SpringAI(GA):Tool工具整合—快速上手

以下实现了工具的典型案例:Method 版、Function 版实现、internalToolExecutionEnabled 设置。工具版—Function,通过 @Tool 注解指定工具 Bean,实现获取天气。工具版—Method,通过 @Tool 注解指定工具 Bean,实现获取时间。工具版—Function,通过自动注入对应的工具 Bean,实现获取时间。工具版—Function,通过自动注入对应的工具 Bean,实现获取天气。说明:本教程将采用2025年5月20日正式的GA版,给出如下内容。

2025-05-26 23:20:36 843

原创 ChatClient 解读

原文链接:SpringAI(GA):ChatClient调用链路解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba最新将陆续完成如下章节教程。本章是第一章(chat初体验)下的其中一部分源码解读—ChatClient解读微信推文往届解读可参考:获取更好的观赏体验,可付费获取飞书云文档Spring AI最新教程权限,目前39.9,随着内容不断完善,会逐步涨价。注:M6

2025-05-25 19:42:39 930

原创 SpringAI(GA)的chat:快速上手+自动注入源码解读

原文链接:SpringAI(GA)的chat:快速上手+自动注入源码解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba最新将陆续完成如下章节教程。本章是第一章:chat初体验实战代码可见:https://github.com/GTyingzi/spring-ai-tutorial 下的 chatapplication.ymlOPENAI 由于封禁的原因,国内无法

2025-05-25 00:00:02 1049

原创 SpringAI(GA版)的Advisor:快速上手+源码解读

原文链接:SpringAI的Advisor:快速上手+源码解读说明:本教程将采用2025年5月20日正式的GA版,给出如下内容版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba最新将陆续完成如下章节教程实战代码可见:https://github.com/GTyingzi/spring-ai-tutorial 下的 advisorapplication.ymlcontrollerMemoryMessageAdvisorCont

2025-05-23 23:09:59 920

原创 SpingBoot集成mail发送邮件

你好,我是影子,曾先后在🐻、新能源、老铁就职,现在是一名AI研发工程师。目前新建了一个交流群,一个人走得快,一群人走得远,关注公众号后可获得个人微信,添加微信后备注“交流”入群。这里用的是自己的个人邮箱:2091945373@qq.com。登陆邮箱(这里我使用的是 QQ 邮箱),获取个人邮箱的授权码。SpringBoot 版本:3.3.9。

2025-05-19 22:34:51 316

原创 面试中的线程题

工作机制:初始化一个计数器,此计数器的值表示需要等待的事件数量。示例:在两个工作线程结束后再调用主线程工作机制:允许一组线程相互等待到达一个共同屏障点示例:当四个线程都达到屏障后,打印一句话,然后每个线程继续执行它们的任务上述完成了两线程交叉打印"A"、“B”,具体说明下模版中是两线程交叉打印 A、B,只需要做简单替换就能实现三线程交叉打印 A、B、C新增线程 C 如下比如要求打印到两线程交叉打印到 10state 控制线程进行轮次,此时可以换为 while 条件,用来控制跳出循环。

2025-05-18 22:44:32 1316

原创 布隆过滤器和布谷鸟过滤器

布隆过滤器(Bloom Filter)是 1970 年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数,检查值是“可能在集合中”还是“绝对不在集合中”空间效率高:通常比精确数据结构占用更少的空间查询速度快:常数时间复杂度 O(1)误报率可控:通过调整哈希函数的数量和布隆过滤器的大小可控制误报率不能删除元素:一旦向布隆过滤器中添加了元素,则不能从中删除基于布谷鸟哈希算法实现的过滤器,存储了哈希值的布谷鸟哈希表相比布隆过滤器的优点支持新增和删除元素更节省空间哈希表跟家紧凑。

2025-05-17 23:03:55 805

原创 DeerFlow的LangGraph节点解读

本文档详细介绍了 DeerFlow 后端系统中使用的 LangGraph 节点。LangGraph 节点是工作流图的核心处理单元,每个节点负责研究流程中的特定任务。这些节点协同工作,处理用户查询、执行研究并生成综合报告。

2025-05-16 16:29:25 607

原创 MCP在线调试工具

一款用来调试 MCP Server 的交互式开发者工具。

2025-05-15 16:09:22 517

原创 Crawl4AI项目介绍及示例

一个专门为大型语言模型和 AI 应用设计的开源网络爬虫工具,旨在为 AI 训练、RAG、知识库构建等场景提供高效、智能的数据采集解决方案。它结合了现代爬虫技术与 AI 处理能力,能够直接输出适配 LLM 的结构化数据(Markdown、JSON 等),并支持动态页面渲染、反爬对抗、分布式部署等高级功能,目前已有 43k 的 star主要支持功能点如下:Markdown 生成🧹 Clean Markdown:生成具有准确格式的干净、结构化的 Markdown。

2025-05-14 20:36:22 975

原创 MCP Server多节点滚动升级一致性治理

背景:现阶段MCP Client和MCP Server是一对一的连接方式,若当前MCP Server挂掉,那么MCP Client便不能使用MCP Server提供的工具能力,MCP Server对于工具的稳定性提供的不到保证

2025-05-13 20:54:23 1047

原创 程序的本质—API接口

我们日常生活中使用的微信,登陆页面调取登陆 API 接口,和朋友发送聊天记录调取发送 API 接口,查看微信朋友圈调取朋友圈接口。通过 API 接口,各类编程语言互通有无,Python、Java、C++ 等编写好对应的服务后统一暴露出去,减少了重复造轮子的人力消耗,这也是为什么互联网发展才几十年,人类历程的社会化程度却比历史以往快进了一大步。为了使各类程序从孤立的个体转变为可组合、可扩展的生态系统成员,那么需要一些特定的协议、规范,而恰好 API 能够完美的解决这个问题,生成视频 API 接口。

2025-05-04 13:12:22 659

原创 企业级分布式 MCP 方案

飞书原文档链接地址:https://ik3te1knhq.feishu.cn/wiki/D8kSwC9tFi61CMkRdd8cMxNTnpg。

2025-05-02 22:06:16 1274 2

原创 影子,介绍一下自己

个人介绍

2024-06-09 17:41:32 985 2

原创 GCN初步尝试

【代码】GCN初步尝试。

2023-08-11 16:01:58 538

原创 CNN-NER论文详解

基于序列标注(sequence labeling)基于超图(hypergraph)基于序列到序列(Seq2Seq)基于片段分类(span classification)本文跟进了《Named Entity Recognition as Dependency Parsing》这一论文的工作,同样采用基于片段分类的方案。

2023-07-31 18:23:09 1114

原创 W2NER详解

W2NER模型,将NER任务转化预测word-word(备注,中文是字-字),它能够统一处理扁平实体、重叠实体和非连续实体三种NER任务。假定摄入的句子 X 由 N 个tokne或word组成,Xx1x2xNXx1​x2​...xN​,模型对每个word pair(xixjx_i,x_jxi​xj​)中的两个word关系类别R进行预测,其中R∈NoneNNWTHW−∗R∈NoneNNWTHW−∗。

2023-07-30 23:08:34 1601

原创 LBERT论文详解

论文地址:https://arxiv.org/abs/2105.07148代码地址:https://github.com/liuwei1206/LEBERT左图是在BERT之后的架构上面引入词汇信息右图是在BERT底层时引入词汇信息首先,对于给定的中文句子sc={c1,c2,...,cn}ci代表句子中的第i个字符s_c = \{c_1,c_2,...,c_n\}\quad c_i代表句子中的第i个字符sc​={c1​,c2​,...,cn​}ci​代表句子中的第i个字符利用词典D匹配出句子中包含的

2023-07-29 16:16:25 442

原创 微软浏览器连不上网络

控制面板 -> 网络和Internet -> Internet 选项 -> 连接 -> 局域网设置 -> 取消代理服务器。针对微软浏览器连不上网络,但其他浏览器仍能连上网络。

2023-07-13 16:13:15 2147

原创 大数据面试小抄

流式大数据处理引擎内存执行速度 -> 速度快任意规模 -> 可扩展性强高吞吐、低延迟:每秒处理数百万个事件,毫秒级延迟结果的准确性:提供事件事件、处理时间语义。对于乱序事件流仍然能提供一致且准确的结果exactle-once状态一致性保证高可用:本身高可用的设置,加上与K8s、YARN、Mesos的紧密集成,再加上从故障中快速恢复、动态扩展任务的能力,Flink能做到以极少的停机事件 7 * 24 全体候运行能够更新应用程序代码将作业迁移到不同的Flink集群,而不会丢失应用程序状态。

2023-02-17 20:15:40 3841

原创 深度学习实验3 - 卷积神经网络

定义一个函数用来生成相应的文件夹定义划分数据集的函数split_data(),将数据集进行划分训练集和测试集将划分好的数据集利用DataLoader进行迭代读取,ImageFolder是pytorch中通用的数据加载器,不同类别的车辆放在不同的文件夹,ImageFolder可以根据文件夹的名字进行相应的转化。这里定义一个batch size为1281 手写二维卷积1.1 自定义卷积通道1.2 自定义卷积层1.3 添加卷积层导模块中1.4 定义超参数1.5 初始化模型、损失函数、优

2022-12-11 22:33:26 9067 19

原创 实验2_前馈神经网络实验

device = torch . device("cuda" if torch . cuda . is_available() else "cpu") # 如果有gpu则在gpu上计算 加快计算速度 print(f'当前使用的device为 {

2022-12-10 22:22:38 6617 14

原创 深度学习课件-实验1_PyTorch基本操作实验

利用 𝐓𝐞𝐧𝐬𝐨𝐫 创建两个大小分别 𝟑×𝟐 和 𝟒×𝟐 的随机数矩阵 𝑷 和 𝑸 ,要求服从均值为0,标准差0.01为的正态分布 2) 对第二步得到的矩阵 𝑸 进行形状变换得到 𝑸 的转置 𝑸^𝑻 3) 对上述得到的矩阵 𝑷 和矩阵 𝑸^𝑻 求内积!利用 𝐓𝐞𝐧𝐬𝐨𝐫 创建两个大小分别 𝟑×𝟐 和 𝟒×𝟐 的随机数矩阵 𝑷 和 𝑸 ,要求服从均值为0,标准差0.01为的正态分布 2) 对第二步得到的矩阵 𝑸 进行形状变换得到 𝑸 的转置 𝑸^𝑻 3) 对上述得到的矩阵 𝑷 和矩阵 𝑸^𝑻 求内积!

2022-12-10 17:46:17 8500 11

原创 深度学习验证结果不一致

在原来的DataLoader那块,在测试时候,将shuffle设置为False,就不会出现结果不一致的了。同一个seed下,几次shuffle之后的结果不一致,实验如下。

2022-12-09 13:36:59 903

原创 深度学习第一次作业 - 波士顿房价预测

由于数据没有null值,并且都是连续型数据,所以暂时不用对数据进行过多的处理,不够既然要建立模型,首先就要进行对housing分为训练集和测试集,取出了大概百分之20的数据作为测试集,剩下的百分之70为训练集。在选取的特征数量远小于第一个模型情况下,得分0.695,略小于第一个模型的0.7559。数据不存在相关性较小的属性,也不用担心共线性,故我们可以用线性回归模型去预测。试使用相关性最高的3个特征量重建模型,并与原模型进行比较。首先,利用线性回归模型对数据进行训练,并预测测试集数据。

2022-11-25 11:27:11 4552 3

原创 biaffine model:Named Entity Recognition as Dependency Parsing

动机:NER研究关注于flat NER,而忽略了nested NER方法:在本文中,使用基于图的依存关系解析中的思想,以通过biaffine model为模型提供全局的输入视图。biaffine model 对句子中的开始标记和结束标记进行评分,使用该标记来探索所有跨度,以便该模型能够准确地预测命名实体工作介绍:在这项工作中,我们将NER重新确定为开始和结束索引的任务,并为这些定义的范围分配类别,我们的系统在多层Bi-LSTM之上使用biaffine模型,将分数分配给句子中所有可能的跨度。

2022-11-24 14:37:09 1380

原创 Nested Named Entity Recognition from Medical Texts: An Adaptive Shared Network Architecture with Att

嵌套命名实体任务的解决,提出了一个新的框架:Adaptive Shared Network Architecture with Attentive CRF(ASAC)采用自适应共享(AS)机制自适应地选择预训练模型每一层的输出来编码输入文本,从而获得不同实体类别的不同特征,通过这种机制,可以从预训练语言模型不同层里去学习上下文特征,用于下游任务在解码阶段利用注意力条件随机场,它使其他实体识别任务的维特比解码输出作为查询。通过注意力机制将查询作为残差输入到原始CRF进行偏差校正。

2022-11-21 16:09:11 922

原创 中文医疗实体关系基于BERT + Bi-LSTM+ CRF

【代码】中文医疗实体关系基于BERT + Bi-LSTM+ CRF。

2022-11-20 14:53:16 1125 3

Characterizing stochastic 的相关资料.zip

Characterizing stochastic 的中文翻译,程序代码

2021-04-13

simulate2020625.mat

simulate2020625.mat

2021-04-14

FracLab2.04.zip

Fractional Gaussian Noise,里面有多个噪声可选择,其中fBmWoodChan函数只需要输入序列长度和hurst指数即可.fBM的时间序列差分即使FGN.

2021-04-12

texstudio.zip

Latex可视化编译软件

2020-12-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除