层次分析法又称为AHP 是用于解决评价类问题的模型
·1.主要思想
层次分析法的主要特点是通过建立递阶层次结构,创造若干个两两因素之间重要的的比较
·2.使用方法
以下是解决评价类问题的思路
1.我们评价的目标是什么
2.我们为了达到目标有哪些可选方案
3.评价的准则或者指标是什么
了解目标以后 我们开始使用层次分析法
1.分析系统中各因素之间的关系,建立系统的递阶层次结构
2.构造判断矩阵*
对于同一层次的各元素关于上一层次种某一准则的重要性进行两两比较,构造两两比较矩阵(判断矩阵)
任何评价类模型都具有主观性
理论:专家群体判断
实际:个人主观判断
实际不用描述判断矩阵数据来源,准则层——方案层的判断矩阵的数值要结合实际来填写,如果题目中有其他数据,可以考虑利用这些数据进行计算。
3.由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验(检验通过权重才能用)
三种计算权重方法
1.算术平均法 2.几何平均法 3.特征值法
建议比赛的时候三种都要用+
一致性检验的步骤
若CR>0.1 则可以修改矩阵 使其往一致性矩阵调整
4.计算各层元素对系统目标的合成权重,并进行排序
EXCEL
·3.层次分析法的一些局限性
so 不适用于多项决策层 以及数据已知的决策层(需要抽象成另一套评价标准)
Another part----代码部分
1.输入判断矩阵
clear;clc代表初始化代码
disp输出提示 然后input
(注:可以在工作区新建变量 打开后直接粘贴excel数据)
2.计算权重
法一:算术平均法
第一步:将判断矩阵按照列归一化(每一个元素除以其所在列的和)
第二步:将归一化的各列相加(按行求和)
第三步:将相加后得到的向量中每个元素除以n即可得到权重向量
法二:几何平均法
第一步:将A的元素按照行相乘得到一个新的列向量、
第二步:将新的向量的每个分量开n次方
第三步:对该列向量进行归一化即可得到权重向量
将这个列向量中的每一个元素除以这一个向量的和即可
法三:特征值法求权重
第一步:求出矩阵A的最大特征值以及其对应的特征向量
第二步:对求出的特征向量进行归一化即可得到我们的权重
总结:其实三种方法都不难 都是调用库中函数 都需要归一化处理
3.计算一致性比例CR
第一篇博客 以为憋了波好的 原来是拉了坨大的