写作总结
其实所有数学建模论文,我认为都应该遵循分析问题,寻找模型,再套用模型,解决问题的基本思路。评价类模型的问题也一样。由于是评价类模型,也就代表我们需要评价某种事物的优劣,因此,我们引入了评价指标,评价指数,形成评价体系。在有关评价类模型的数模学习中,我们学习了层次分析法,topsis法,熵权法,模糊综合评价。
层次分析法
评价类模型中,我们有时会对评价对象进行层次的划分。
层次分析法的主要特点是通过建立递阶层次结构,创造若干个两两因素之间重要的的比较
主要思路:
1.分析系统中各因素之间的关系,建立系统的递阶层次结构
2.构造判断矩阵*
3.由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验(检验通过权重才能用)
层次分析法的局限性
1.评价的决策层不能太多,否则导致判断矩阵和一致矩阵差异可能会大
2.主观性比较强,数据具有主观色彩,同时无法处理已知数据的决策层
优点:方便
topsis综合评价法
topsis也叫优劣解距离法,是根据评价对象与理想化目标的接近程度进行排序的方法,是一种距离综合评价方法。
topsis可以分为4步,
1.指标同向化、标准化并得到权重
2. 得到加权后的规范化矩阵Z
3.计算各样本距离正、负理想解的距离
4.计算各评价对象与最优方案的贴近程度
topsis特别适合具有多组评价对象时,要求通过检测评价对象与最优解