题目描述
对于一个整数集合,我们定义“加等式”如下:集合中的某一个元素可以表示成集合内其他元素之和。如集合 1,2,31,2,3 中就有一个加等式:3=1+23=1+2。而且 3=1+23=1+2 和 3=2+13=2+1 是相同的加等式,也是这个集合唯一的加等式。给定一个整数集合,编程找出其加等式的个数。
输入格式
第一行为 t,表示测试数据组数。
接下来 t 行,每行表示一组测试数据。其中第一个数 m,表示集合元素的个数,接下来 m 个不同的整数 xi,表示集合元素。
输出格式
对于每个输入数据,输出一个整数,表示其中加等式的个数。
输入输出样例
输入 #1复制
3 3 1 2 3 3 1 2 5 6 1 2 3 5 4 6
输出 #1复制
1 0 7
说明/提示
1≤t≤10,1≤m≤30,1≤x≤1000
直接深度优先搜索DFS
其实也就是遍历每个元素为等式的和,然后搜索出排序后的数组中和为该元素的情况,ans++
因为不限个数,所以只要和相等即可
但是不知道如何动态规划。。。。
上代码:
#include<bits/stdc++.h>
using namespace std;
int t,n,a[32],ans;
bool cmp(const int a,const int b)
{
return a>b;
}
void dfs(int num,int sum,int now)
//num是枚举的加等式的和
//sum是当前所有加数的和
//now是当前搜索到第几个数
{
if(num==sum)
{
ans++;
return ;
}
for(int i=now+1;i<=n;i++)
if(sum+a[i]<=num) dfs(num,sum+a[i],i); //将合法的加数加上继续搜索
return ;
}
int main()
{
cin>>t;
while(t--)
{
ans=0;
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
sort(a+1,a+n+1,cmp); //将所有元素从大到小排序
for(int i=1;i<=n;i++) dfs(a[i],0,i); //枚举所有元素作为加等式的和
cout<<ans;
}
return 0;
}