洛谷P1566【加等式】

本文介绍了一种解决给定整数集合中加等式个数问题的方法,通过深度优先搜索遍历每个可能的和,结合数组排序优化查找过程。然而,提到使用了深度优先搜索但未实现动态规划策略。
摘要由CSDN通过智能技术生成

题目描述

对于一个整数集合,我们定义“加等式”如下:集合中的某一个元素可以表示成集合内其他元素之和。如集合 1,2,31,2,3 中就有一个加等式:3=1+23=1+2。而且 3=1+23=1+2 和 3=2+13=2+1 是相同的加等式,也是这个集合唯一的加等式。给定一个整数集合,编程找出其加等式的个数。

输入格式

第一行为 t,表示测试数据组数。

接下来 t 行,每行表示一组测试数据。其中第一个数 m,表示集合元素的个数,接下来 m 个不同的整数 xi​,表示集合元素。

输出格式

对于每个输入数据,输出一个整数,表示其中加等式的个数。

输入输出样例

输入 #1复制

3
3 1 2 3
3 1 2 5
6 1 2 3 5 4 6

输出 #1复制

1
0
7

说明/提示

1≤t≤10,1≤m≤30,1≤x≤1000

直接深度优先搜索DFS

其实也就是遍历每个元素为等式的和,然后搜索出排序后的数组中和为该元素的情况,ans++

因为不限个数,所以只要和相等即可

但是不知道如何动态规划。。。。

上代码:

#include<bits/stdc++.h>
using namespace std;
int t,n,a[32],ans;
bool cmp(const int a,const int b)
{
    return a>b;
}
void dfs(int num,int sum,int now)  
				//num是枚举的加等式的和
                //sum是当前所有加数的和
                //now是当前搜索到第几个数
{
    if(num==sum)
    {
        ans++;
        return ;
    } 
    for(int i=now+1;i<=n;i++)
        if(sum+a[i]<=num) dfs(num,sum+a[i],i); //将合法的加数加上继续搜索
    return ;
}
int main()
{
    cin>>t;
    while(t--)
    {
        ans=0;
        cin>>n;
        for(int i=1;i<=n;i++) cin>>a[i];
        sort(a+1,a+n+1,cmp);    //将所有元素从大到小排序
        for(int i=1;i<=n;i++) dfs(a[i],0,i); //枚举所有元素作为加等式的和
        cout<<ans;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值