选取聚类数(k值)时是根据是否容易解释来确定的。
一.K-Means聚类算法
聚类算法呈现成图的形式是非常直观的,但二维图上只包含了两个指标,当有多个指标时我一时无法理解其实无非就是n个指标对应为n维空间以后无法直观想象而已,最终还是欧式距离。
在论文中使用K-Means算法时最好用流程图的形式来呈现出来。
二.系统聚类算法
三.DBSCAN算法(基于密度)
聚类算法的核心思想比较简单就直接上PPT了不需要再去费劲理解。
DBSCAN算法很有意思,它的思想就是随机选取中心点,指定一个半径和半径内最少点的个数,指定过后开始以中心点为圆心指定半径作圆,作出的圆中的点的个数若不少于指定的最少点的个数,则将圆中的点归为一类,只要圆中圈到点的个数不少于最小值就不断以圆中边界点为圆心向外延伸。最后会产生噪声点,噪声点就是无法进入能被归为一类圆中的点。