C++(动态规划之不同路径2)

题目:(力扣链接:63. 不同路径 II - 力扣(LeetCode))

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

代码:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        vector<vector<int>> dp(m,vector<int>(n,0));
        if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1){
            return 0;
        }
        for(int i=0;i<m;i++){
            if(obstacleGrid[i][0]!=1){
                dp[i][0]=1;
            }else{
                break;
            }
        }
        for(int i=0;i<n;i++){
            if(obstacleGrid[0][i]!=1){
                dp[0][i]=1;
            }else{
                break;
            }
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==1){
                    dp[i][j]=0;
                }else{
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};

 理解:

跟之前的求路径不一样的地方时多了一个障碍物;所以根据之前的写法最开始我只是简单的在两个for循环里面进行了一个判断

if(obstacleGrid[i][j]==1){
                    dp[i][j]=0;
                }

但第一次提交就发现例二过不了,然后我看了一下前面两个for循环赋初始值的时候要进行判断,我就做了一个判断之后发现还是不对,之后又加了一个break,因为:无论是第一行还是第一列,当碰到障碍物后后面的都走不到都应该为0,而我最开始已经赋值0了,所以直接结束循环就好啦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值