组合数(三种求法)

预热知识

C_{n}^{m}=C_{n}^{n-m}A_{n}^{m}=\frac{n!}{m!}=n*(n-1)*(n-2)*....*(n-m+1),C_{n}^{m}=\frac{A^{_{n}^{m}}}{A_{n}^{n}}=\frac{n!}{(n-m)!}

二项式定理:(a+b)^{n}=\sum_{i=0}^{n}C_{n}^{i}a^{i}b^{n-i}

1.递推法(杨辉三角)

从 n个数不同的数中选出 m个的方案数是 C_{n}^{m},对第一个数选和不选两种决策;

若不选,则从剩下的 n-1个中选 m个,即C_{n-1}^{m}

若选,则从剩下的 n-1个中选 m-1个,即C_{n-1}^{m-1}

所以递推式 C_{n}^{m}=C_{n-1}^{m}+C_{n-1}^{m-1}

根据公式我们发现和杨辉三角一样,C_{n}^{m}当n==1,m=0时,为1;当n==3,m==2时,为3。m,n数据小的时候我们可以用递推,但如果数据范围太大就要用其他方法

void getc(){
for(int i=0;i<n;i++){
 for(int j=0;j<=i;j++){
 if(j==0)
 a[i][j]=1; //数组a存储的是n=i,m=j的组合数
   else{
	a[i][j]=(a[i-1][j]+a[i-1][j-1])%mod;
		}
	  }
	}
}

2.快速幂+乘法逆元

因为组合数太大,算法竞赛中常见问题是求解组合数取模C_{n}^{m}%p(其中p为质数),C_{n}^{m}=\frac{n!}{(n-m)!}

在取模的条件下,除以一个数等价于乘以这个数的乘法逆元,例如,x /2%107=x*54%107,那么54就是 2在模107条件下的乘法逆元

1.求阶乘,求出n!,m!,(n-m)!  %p,for循环递推即可,每次乘法后取模

2.求出m!,(n-m)! 的乘法逆元(%p),因为p为质数,所以 x的逆元即 x^{p-2},用快速幂即可求出

易得,C_{n}^{m}=inf[n] * (fa[m]的逆元)*(fa[n-m]的逆元),总时间复杂度为O(n)

int qmi(int a,int b,int p){
    int res=1; 
    while(b){
        if(b&1)
        res=res*a%p;
        a=a*a%p;
        b>>=1;
    }
    return res;  //快速幂
}
void init(){
    fa[0]=inf[0]=1;
    for(int i=1;i<=N;i++){
        fa[i]=fa[i-1]*i%p;        //fa为阶乘数组
        inf[i]=inf[i-1]*qmi(i,p-2,p)%p; //计算逆元
    }  
}
int C(int n,int m,int p){
    int ans=0;
    if(m>n)return 0;
    return fa[n]%p*inf[m]%p*inf[n-m]%p; //inf为求得的逆元数组
}

3.卢卡斯定理

前半部分可以继续使用卢卡斯定理递归求解,后半部分可以用第二种方法直接求解,后半部分的m,n都会小于p,时间复杂度为O(n)。适用于n较大,p较小或n较小的情况

int lucas(int a,int b,int p){
    if(a<p&&b<p)return C(a,b,p);
    return C(a%p,b%p,p)*lucas(a/p,b/p,p)%p; //前半部分为方法二中的函数,后半部分为递归
}  

4.例题

这是一道卢卡斯定理的模板题 

 例题链接

#include<iostream>
#include<algorithm>
#include<cstring>
#define int long long
using namespace std;
const int N = 1e5+10;
int inf[N],fa[N];
int T;
int n,m,p;
int qmi(int a,int b,int p){
    int res=1; 
    while(b){
        if(b&1)res=res*a%p;
        a=a*a%p;
        b>>=1;
    }
    return res;
}
void init(){
    fa[0]=inf[0]=1;
    for(int i=1;i<N-10;i++){
        fa[i]=fa[i-1]*i%p;
        inf[i]=inf[i-1]*qmi(i,p-2,p)%p;
    }
}
int C(int a,int b,int p){
    int ans=0;
    if(b>a)return 0;
    return fa[a]%p*inf[b]%p*inf[a-b]%p;
}
int lucas(int a,int b,int p){
    if(a<p&&b<p)return C(a,b,p);
    return C(a%p,b%p,p)*lucas(a/p,b/p,p)%p;
}  //前半部分为方法二中的函数,后半部分为递归 
signed main(){
    cin>>T; 
    while(T--){
        cin>>n>>m>>p;
        init();  
        cout<<lucas(n+m,m,p)<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值