1.安装wsl和打开Hyper-V功能(前置准备)
这个是为了支持我们的Docker Desktop运行。
1.1.安装wsl
使用管理员身份运行命令行。
如果显示 “无法与服务器建立连接就执行“,表示没有安装wsl,如果更新成功,那就不用执行下面的按照步骤了
wsl --update
执行以下命令
wsl --update --web-download
因为它是微软的产品,所以要开梯子,不然会下得非常慢,如果没有梯子可以使用迅雷下载这个地址https://github.com/microsoft/WSL/releases/download/2.1.5/wsl.2.1.5.0.x64.msi
1.2.打开Hyper-V功能
win+R输出control,打开程序与功能,打开启动与关闭Windows功能。
打开我下面标红的功能
1.3.安装Hyper-V功能
注意如果没有Hyper-V的选项,那就执行以下步骤。
在桌面保存以下内容为txt文件
pushd "%~dp0"
dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt
for /f %%i in ('findstr /i . hyper-v.txt 2^>nul') do dism /online /norestart /add-package:"%SystemRoot%\servicing\Packages\%%i"
del hyper-v.txt
Dism /online /enable-feature /featurename:Microsoft-Hyper-V -All /LimitAccess /ALL
pause
更改txt的后缀名为bat。
用管理员身份运行
运行完成后,我们就发现我们有了Hyper-V功能,现在回去开启。
完成后,我们重启电脑,准备安装Docker Desktop。
2.安装Docker Desktop
为什么要安装Docker Desktop?因为dify需要使用docker容器启动,通过docker compose一键启动,非常方便,但是为什么要安装Windows本地的docker呢?我们可不可以使用linux系统内的docker呢?当然可以,只需满足以下要求即可。
- CPU >= 2 Core
- RAM >= 4 GiB
但是考虑到我们没有云服务器,或者本地虚拟机跑起来比较费劲,我们就用Docker Desktop来部署了。
2.1.官网下载(下载地址)
安装完成后,进入页面,我们可以跳过登录。
当左下角显示
2.2.配置镜像源
表示我们成功启动了docker容器,先别着急,我们需要配置一下镜像源,保证我们的下载速度。
进入设置
进入docker engine
复制我以下的内容进去,再restart
{
"registry-mirrors" : ["https://docker.registry.cyou",
"https://docker-cf.registry.cyou",
"https://dockercf.jsdelivr.fyi",
"https://docker.jsdelivr.fyi",
"https://dockertest.jsdelivr.fyi",
"https://mirror.aliyuncs.com",
"https://dockerproxy.com",
"https://mirror.baidubce.com",
"https://docker.m.daocloud.io",
"https://docker.nju.edu.cn",
"https://docker.mirrors.sjtug.sjtu.edu.cn",
"https://docker.mirrors.ustc.edu.cn",
"https://mirror.iscas.ac.cn",
"https://docker.rainbond.cc",
"https://do.nark.eu.org",
"https://dc.j8.work",
"https://dockerproxy.com",
"https://gst6rzl9.mirror.aliyuncs.com",
"https://registry.docker-cn.com",
"http://hub-mirror.c.163.com",
"http://mirrors.ustc.edu.cn/",
"https://mirrors.tuna.tsinghua.edu.cn/",
"http://mirrors.sohu.com/"
],
"insecure-registries" : [
"registry.docker-cn.com",
"docker.mirrors.ustc.edu.cn"
],
"debug": true,
"experimental": false
}
等重启完docker容器后,我们进入命令行,执行docker ps。
表示启动成功
至此,我们的Docker Desktop就成功安装完成了。
3.下载Dify(下载地址)
3.1.启动dify
下载zip
解压完成后
管理员进入Windows PowerShell
进入我们安装好后的docker文件夹
cd进入
依次执行
cp .env.example .env
docker compose up -d
等全部变为绿色时,代表我们启动成功。
注册好一个管理员后,直接用管理员登录即可,进入后
3.2.接入本地ollama的模型
在dify的docker文件夹里面找到.env文件
在末尾加上
# 启用自定义模型
CUSTOM_MODEL_ENABLED=true
# 指定 Olama 的 API地址(根据部署环境调整IP)
OLLAMA_API_BASE_URL=host.docker.internal:11434
重启一下dify
使用以下命令停止
docker compose down
再启动
docker compose up -d
注意以上两个操作都必须要在dify文件夹下面的docker文件夹内。
从模型供应商安装ollama
由于我已经安装,已经不能安装,类似下面的按照即可
第一次没有安装上去是正常的,多安装几次,看到打了绿色的√就代表安装成功了。
接入我们本地的模型,deepseek为例,保证我们本地已经部署了。
不确定可以使用ollama list来查看本地部署的模型。
我们需要以NAME来导入模型。
添加模型
查看我的示例
基础URL就是我们前面配的。
测试一下我们接入的模型。
创建一个聊天助手应用
选择我们本地的对话模型
但是我们本地可以部署的deepseek参数太低了,无法处理很多需求,我们还是需要去调用模型代理商的模型,我们可以去注册硅基流动的key,用我的邀请码kRe4Bgii,双方都可以可以免费获得2000万Token。
要是这篇文章给大家带来了帮助的话,邀请码可以填一下我的kRe4Bgii,这样我也可以得到2000万Token,谢谢各位了。
3.3.接入硅基流动代理的模型
我们先得到我们的key
dify下载硅基流动
设置好我们key,我们就可以调用满血版deepseekR1模型了
4.最后总结
Dify 是一个专注于 AI 应用开发的开源平台,旨在帮助开发者快速构建、部署和管理基于大语言模型(如 GPT、Claude 等)的智能应用。以下是其核心要点总结:
核心功能
-
可视化工作流
提供低代码/无代码界面,通过拖拽式操作设计 AI 应用流程,降低开发门槛。 -
多模型支持
兼容主流大模型(如 OpenAI、Anthropic、Hugging Face 等),支持自定义模型接入。 -
数据处理与训练
支持数据导入、标注和微调(Fine-tuning),优化模型在特定场景的表现。 -
API 与集成
一键生成 API,轻松集成到现有系统(如网站、APP、企业工具)。 -
实时监控与分析
提供应用使用统计、性能监控和效果反馈,支持持续迭代。
主要特点
- 开箱即用:预置常见 AI 应用模板(如聊天机器人、文本生成等)。
- 灵活部署:支持云服务(SaaS)和私有化部署,保障数据隐私。
- 多模态扩展:逐步支持文本、图像、语音等多模态交互。
- 团队协作:提供权限管理和多人协作功能,适合企业级开发。
适用场景
- 智能助手:客服机器人、个性化推荐、文档分析。
- 内容生成:自动撰写文章、营销文案、代码生成。
- 数据分析:从非结构化数据(如用户反馈)中提取洞察。
- 自动化流程:与企业系统结合,自动化处理工单、邮件等。
目标用户
- 开发者:快速验证 AI 应用原型,减少底层开发工作量。
- 企业:无需深厚 AI 技术储备,即可部署定制化智能工具。
- 创业者:低成本试错,聚焦业务逻辑而非模型训练。
优势
- 降低开发成本:简化从模型调用到应用落地的全流程。
- 强调可扩展性:通过插件和 API 扩展功能,适应复杂需求。
- 社区驱动:开源生态持续更新,活跃社区提供支持。