堆排序算法

本文介绍了堆(最小堆和最大堆)作为数据结构在排序中的应用,特别是堆排序算法的工作原理,涉及维护堆的操作和时间复杂度分析。通过C语言代码展示了从输入元素到排序输出的过程。
摘要由CSDN通过智能技术生成

首先得知道堆是一种完全二叉树的数据结构,可以分为最大堆和最小堆,堆的储存方式是用一维数组储存。

如下图就是最小堆,而最大堆就是最小堆倒过来,上面的数要大于下面的数

1.为什么堆可以实现排序?我们知道最小堆的最上面的数一定是最小的(最大堆最上面是最大的),因此堆排序的过程就是取出堆的根部最大或最小值,然后再去维护堆变成最大堆或最小堆,再取出,再维护的过程,而维护的过程时间复杂度是O(logN),取出所有数的时间复杂度是O(N),因此整体时间复杂度是O(NlogN)和快速排序一样的。

如下面代码就是堆排序,输入sum代表数组元素的个数,再输入sum个元素,然后进行从小到大排序后输出结果

#include<stdio.h>
int a[100], n;
void swap(int x, int y)//定义函数交换数组
{
	int t;
	t = a[x]; a[x] = a[y]; a[y] = t;
}
void siftdown(int x)//维护最大堆操作,即将a[x]这个元素和他的儿子进行比较交换
{
	int t, flag = 0;
	while (flag == 0 && 2 * x <= n)//不是最大堆且至少有左儿子
	{
		if (a[x] < a[2 * x])
			t = 2 * x;
		else
			t = x;
		if (a[t] < a[2 * x + 1] && 2 * x + 1 <= n)//存在右儿子
			t = 2 * x + 1;
		if (t != x)//存在儿子比本身大
		{
			swap(t, x);//进行交换
			x = t;
		}
		else//不存在儿子比本身大,即满足了最大堆
			flag = 1;
	}
}
void creat()//建立最大堆
{
	int i = n / 2;
	while (i)
	{
		siftdown(i);
		i--;
	}
}
int main()
{
	int sum, i;//sum表示需要排序的元素个数
	scanf("%d", &sum);
	n = sum;
	for (i = 1; i <= sum; i++)//循环输入原来元素放进a数组里面
		scanf("%d", &a[i]);
	creat();//建立最大堆
	while (n > 1)//遍历sum个元素
	{
		swap(1, n);//交换第一个元素即堆的根部和最后一个元素
		n--;//此时数组最后一个元素是最大的了,所以不用考虑了进行n--
		siftdown(1);//重新维护最大堆
	}
	for (i = 1; i <= sum; i++)//输出排序后的结果
	{
		printf("%d ", a[i]);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3分人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值