一、spark简介
Spark使用Scala语言进行实现,能操作分布式数据集。
Spark是在借鉴了MapReduce之上发展而来的,继承了其分布式并行计算的优点并改进了MapReduce明显的缺陷。
Spark的适用场景:
1. 复杂的批量处理(Batch Data Processing),偏重点在于处理海量数据的能力,至于处理速度可忍受,通常的时间可能是在数十分钟到数小时;
2. 基于历史数据的交互式查询(Interactive Query),通常的时间在数十秒到数十分钟之间
3. 基于实时数据流的数据处理(Streaming Data Processing),通常在数百毫秒到数秒之间
二、spark使用思路
spark是一个分布式计算框架,主要流程:数据输入——数据计算——数据输出
三、准备工作
1.检查python版本,python3.12有部分功能不能使用,需要降低python版本。作者使用的是3.10
2.导入pyspark包。
3.链接python和spark。代码如下
from pyspark import SparkConf,SparkContext
import sys
import os
#查看python解释器路径
#print(sys.executable)
#spark连接python,这里的路径可以根据print(sys.executable)查看
os.environ['PYSPARK_PYTHON']="D:\\pythonProject\\.venv\\Scripts\\python.exe"
#pyth