python——spark使用

一、spark简介

Spark使用Scala语言进行实现,能操作分布式数据集。

Spark是在借鉴了MapReduce之上发展而来的,继承了其分布式并行计算的优点并改进了MapReduce明显的缺陷。

Spark的适用场景:

1.  复杂的批量处理(Batch Data Processing),偏重点在于处理海量数据的能力,至于处理速度可忍受,通常的时间可能是在数十分钟到数小时;

2.  基于历史数据的交互式查询(Interactive Query),通常的时间在数十秒到数十分钟之间

3.  基于实时数据流的数据处理(Streaming Data Processing),通常在数百毫秒到数秒之间

二、spark使用思路

spark是一个分布式计算框架,主要流程:数据输入——数据计算——数据输出

三、准备工作

1.检查python版本,python3.12有部分功能不能使用,需要降低python版本。作者使用的是3.10

2.导入pyspark包。

3.链接python和spark。代码如下

from pyspark import SparkConf,SparkContext
import sys
import os

#查看python解释器路径
#print(sys.executable)


#spark连接python,这里的路径可以根据print(sys.executable)查看
os.environ['PYSPARK_PYTHON']="D:\\pythonProject\\.venv\\Scripts\\python.exe"


#pyth
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值