希尔排序

9347c11bd8de4276927726636553bde4.gif

文章目录

  • 前言
  • 一.直接插入排序(时间复杂度N^2)
  • 二.希尔排序
  • 时间复杂度

前言

今天我们来讲一下排序算法中的插入排序中的希尔排序,插入排序分为两种,一种是直接插入排序,另一种就是希尔排序


一.直接插入排序(时间复杂度N^2)

我们这个排序,我们就以默认的排升序为主,就是说给你一组随机的数,我要把它排成顺序有很多种算法,这些排序在应对不同的数据中有好坏,所以我们才需要学习这些排序方法。

然后我们来看直接插入算法,这个方法跟名字来看就是直接插入

思路:当插入第i(i>=1)个元素的时候,前面的arr[0],.....arr[i-1],已经排好序,此时拥有arr[i]的排序码与arr[i-1]比较,看是插在他前面还是插在他后面就可以了

adb331ce09df42fd89dfd0acd303e091.png

void InsertSort(int* a, int n)
{
	//[0,end]有序,end+1位置的值插入[0,end]中,让[0,end+1]也有序
	for (int i = 0; i < n - 1; i++)
	{
		int end = i;
	//把当前end+1的值贮存下来,用来比较
		int tmp = a[end + 1];
		//为什么要end>=0,因为数据除了和不仅要和前面的数比,还要和前面所有的数去比
		while (end >= 0)
		{
			//如果大,就往后挪
			if (a[end] > tmp)
			{
				//为什么只有end+1换了,因为我之前保存了tmp的值,所以后续只用tmp去比较就可以了
				a[end+1] = a[end];
				end--;
			}
			//如果小,大的就在后面待着
			else
			{
				break;
			}
		}
	    //因为大的就在后面待着,所以在我出循环之后,将这个数据放在当前end之后
		a[end + 1] = tmp;
	}

二.希尔排序

概念

希尔排序(Shell Sort)是插入排序的一种,它是针对直接插入排序算法的改进。

希尔排序又称缩小增量排序,因 DL.Shell 于 1959 年提出而得名。

它通过比较相距一定间隔的元素来进行,各趟比较所用的距离随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止。

希尔排序,他又称为缩小量排序,其实他就是直接插入排序的一种优化,他的主要思路就是预排序

思路:多组间隔为gap的预排序,由大变小,gap越大,大的数可以越快的到后面,小的数可以越快的到前面,gap越大与排序越不接近有序,gap越小越接近有序,当gap==1的时候就是直接插入排序

994af937278745c1ab0edcce099b7d30.png

void shellsort(int* a, int n)
{
	int gap = n;
	while(gap>1)
	{
		gap = gap / 2;
		//把间隔为gap的同时排
		//为什么是i < n - gap,因为超过这个就越界了
		for (int i = 0; i < n - gap; i++)
		{
			//这个里面是一次间隔为gap的排序
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{if (a[end] > tmp)
				{
					a[end + gap] = a[end];
					end-=gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

如果实在无法理解希尔排序,可以直接写一个插入排序,把1换成gap就可以了

时间复杂度

希尔排序的时间复杂度是O(N*log2 N)

时间复杂度是最坏的结果,直接插入排序最坏的结果就是全是混乱的,每一个都要从头排到位,所以就是N的平方,而希尔排序我通过间隔gap即使我每一次都要从头排到尾,但是我排的次数是一半一半的递减的,所以是log2 N次,时间复杂度是O(N*log2 N)

 

评论 60
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LaNzikinh篮子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值