1 Pytorch介绍
PyTorch 是一种用于构建深度学习模型的功能完备框架,以出色的灵活性和易用性著称。是一种通常用于图像识别和语言处理等应用程序的机器学习。使用 Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。无论是学术研究、工业应用还是教育,PyTorch 都是一个值得学习和使用的工具。
Pytorch的几个主要特性:
- PyTorch 使用动态计算图,这意味着图的结构可以在运行时动态改变。这使得调试和实验变得更加容易,因为你可以实时看到计算图的变化。
- PyTorch完全支持GPU,并且使用反向模式自动微分技术,通过 torch.autograd
模块实现。这使得实现和训练神经网络变得更加简单,因为你不需要手动计算梯度。 - PyTorc生态系统还包括许多工具和库,如 torchvision(用于计算机视觉)、torchaudio(用于音频处理)和torchtext(用于自然语言处理)。这些库提供了预训练模型和数据加载工具,加速了开发过程。
2 Miniconda安装
在安装pytorch之前需要先创建conda环境,方便后续在不同的conda环境中安装不同版本的pytorch
2.1 Miniconda介绍
Miniconda是一个更小的Anaconda发行版(Anaconda是一个包含大量预装数据科学和机器学习库的Python发行版),它只包含conda包管理器和Python以及其必要的库。Miniconda的目的是提供一个更轻量级的选项来安装和运行conda环境,同时保持Anaconda的核心功能。Miniconda可以安装在任何操作系统上,并且可以用于创建轻量级的Python环境,适合那些需要定制环境,不需要Anaconda完整发行版中所有组件的用户。使用Miniconda,用户可以轻松地安装、更新和管理Python包,以及创建隔离的Python环境。
2.2 Miniconda安装教程
搜索Miniconda或点击下面的链接,进入Miniconda官网:
Miniconda — Anaconda documentation
下面以Windows系统为例,安装步骤如下:
1、下载对应的Miniconda版本
2、 运行安装程序
!!!选择安装路径(推荐安装到D盘或者E盘)
!!!勾选添加到环境变量
3、完成安装
2.3 Miniconda环境操作
2.3.1 运行Miniconda
1、 按win键,点击全部
2、打开Miniconda下的Anaconda Prompt
3、环境操作都在该终端下运行
2.3.2 换源
1、找到配置文件
查看C:\Users\Username(你的用户名称)路径下是否存在.condarc文件,如果没有在Anaconda Prompt的终端下输入:
conda config --set show_channel_urls yes
会在用户名路径中生成.condarc文件,内容如下:
2、 修改镜像源
将文件内容替换为:
channels:
- defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
上面是更换为清华镜像源,也可以搜索其他镜像源更换
3、环境操作与anaconda相同
列出所有虚拟环境
conda env list
创建虚拟环境
conda create -n env_name(虚拟环境名称) python=3.9(python版本)
重命名某个虚拟环境
conda rename -n 现在的名称 新的名称
激活虚拟环境
activate your_env_name(虚拟环境名称)
退出虚拟环境
conda deactivate
删除虚拟环境
conda env remove -n 虚拟环境的名称
查询虚拟环境中安装的包
conda list
从虚拟环境中删除包
conda remove package_name
更新已下载的包
pip install --upgrade pyarrow
中断下载
Ctrl+c
安装项目需要的环境
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
国内的pip源,如下:
阿里云 http://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
豆瓣(douban) http://pypi.douban.com/simple/
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
3 CUDA安装
3.1 CUDA toolkit和cuDNN的作用
CUDA Toolkit和cuDNN是NVIDIA提供的两个重要软件组件,它们在GPU计算和深度学习中扮演着关键角色。
- CUDA Toolkit是一个用于开发GPU加速应用程序的综合工具包。它允许开发者使用C、C++、Fortran等语言编写代码,并通过CUDA编译器将其编译为GPU可执行代码。
- cuDNN是NVIDIA为深度学习优化的库,在CUDA之上运行,专门为深度学习设计,提供了高效实现的深度神经网络常用操作,如卷积层、池化层、激活函数等。
- 兼容性:需要与特定版本的CUDA Toolkit配合使用,确保深度学习框架(如TensorFlow、PyTorch)能够有效利用GPU加速。
总结:
CUDA Toolkit是开发GPU加速应用的基础,提供了底层的编程接口和工具。cuDNN是构建在CUDA之上的优化库,专注于深度学习的计算需求。
安装深度学习框架时,通常需要先安装兼容的CUDA Toolkit,然后再安装cuDNN,以实现GPU加速功能。通过结合使用CUDA Toolkit和cuDNN,开发者可以显著提升深度学习模型的训练和推理效率。
3.2 查看显卡支持的CUDA版本
3.2.1 方法一:终端查看
同时点击win+r,输入cmd点击“确定”,进入终端窗口,输入nvidia-smi
查看CUDA版本:
3.2.1 方法二:NVIDIA控制面板查看
点击win键,搜索NVIDIA
点击NVIDIA Control Panel,依次点击系统信息,组件。
查看版本
!!!此处显示的CUDA版本并不意味着你使用显卡本身“最高支持”的CUDA版本,仅仅是你当前安装的驱动所支持的 CUDA版本。如果你发觉该版本似乎太低,你可以在下载适用于你显卡的最新版本的驱动程序。
3.3 下载CUDA toolkit
1、进入CUDA官网
搜索CUDA Toolkit Archive 页面或直接点击下面的链接:
CUDA Toolkit Archive | NVIDIA Developer
2、下载历史版本
一般来说,CUDA版本可以向下兼容,所以可以选择下载与自己CUDA版本一样或者更低的tooolkit版本,但是注意后面下载cudnn版本的时候要和自己下载的toolkit版本对应。
!!!
如果需要编译CUDA代码或开发CUDA应用程序:可能需要安装Visual Studio或Visual Studio Build Tools
如果只是使用PyTorch进行GPU训练,并且是通过pip安装预编译的PyTorch包,不需要下载和安装Visual Studio
3、下载对应的安装包
比如这里选择的是windows操作系统,win11版本的。
4、下载安装包后运行安装
运行安装程序,选择安装路径(D盘或E盘)
检查系统兼容性,要注意安装的cuda版本要小于等于电脑的cuda版本
同意并继续
这里选择自定义安装
组件选择CUDA,点击“+”号展开CUDA里的详细组件
!!!这里要把Visual Studio Integration给取消掉
选择安装位置
开始安装
安装完成
5、 检验是否安装成功
打开cmd,输入nvcc -V
出现了你安装的CUDA的版本信息,说明安装成功了。
同时也可以查询一下本机的gpu设备,测试一下带宽:定位安装目录的demo_suite文件夹(安装文件路径/NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite)
点击win+R,输入cmd打开终端
Cd 到该目录下: Cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite
输入文件名运行文件(包括后缀.exe)
./deviceQuery.exe
./bandwidthTest.exe
出现Result = PASS说明安装成功了
3.4 下载cudnn
在NVIDIA官方网站下载安装包或者之间点击下面的链接:
https://developer.nvidia.com/rdp/cudnn-archive
如果你没有NVIDIA开发者账号的话,就按照提示注册一个就好(qq邮箱就行),再登录即可下载了。
需要下载与CUDA版本相同的cudnn版本
Cuda下载的12.X版本的就下载12.X
Cuda下载的11.X版本的就下载11.X
cuDNN版本不需要选择最新的,选择前几个版本的就行。
点击windosw版本的开始下载
下载下来是个压缩包(名称与这个类似cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip) 直接解压缩,解压完是如下的文件夹:
将bin、include、lib三个文件夹里的文件复制到cuda toolkit文件夹下的同名文件里
cuDNN安装完成
4 Pytorch安装
4.1 查找对应的版本号
查看电脑支持的最高CUDA版本,与上面3.2的查看方法相同,即在cmd终端输入nvidia-smi
或者打开NVIDIA Control Panel
4.2 下载离线的Pytorch
打开Pytorch的离线下载资源网站:
https://download.pytorch.org/whl/torch_stable.html
会看到如下界面 :
首先确定你要安装的torch版本和torch vision版本
搜索pytorch或者点击下面的链接
https://pytorch.org/
打开pytorch官网:
下拉点击历史版本的pytorch
点击Previous versions of Pytorch
找一个支持你电脑CUDA版本的pytorch版本,一般不要下载最新的pytorch版本
这里以V2.3.1,CUDA版本12.1为例下载
找到该界面,确定CUDA 12.1的pytorch版本为2.3.1,torchvision版本为0.18.1
确定自己conda新建的虚拟环境的python版本:
打开Anaconda Prompt,输入activate name(你的环境名称)
激活环境
输入python --version
查看当前环境下的python版本
比如我这里的python版本是3.10版本。
如果还没有创建虚拟环境,可以在(base)环境下输入conda create -n env_name(虚拟环境名称) python=3.10(python版本)-y
来创建一个虚拟环境
比如这里就创建了一个名为pytorch_cp310,python版本为3.10的环境。
在(base)环境下输入conda env list
可以查看已经创建的环境名称。
下面以CUDA版本12.1,python3.10版本为例下载对应的torch版本
回到刚才的离线下载网站。
https://download.pytorch.org/whl/torch_stable.html
找到对应的torch版本,比如例子对应的是 cu121,torch2.3.1,cp310的windows版本。
点击就会开始下载
再找到对应的torchvision版本,例子对应的是cu121,torchvision0.18.1,cp310的windows版本。
点击就会开始下载
下载完成后会有这样的两个文件
可以把这两个文件单独在D盘或E盘建一个文件夹保存,方便后面在conda环境下安装。
4.3 在conda环境中安装Pytorch
打开Anaconda Prompt输入activate name(自己创建环境的名称)
激活环境
输入cd E:\requirements\torch(你的保存下载的两个文件的路径)进入到该路径。
!!!如果输入cd 路径没有反应,可以先输入D:或者E:进入到根路径下再输入上面的命令进入保存路径。
复制文件名称(带上.whl的后缀),在命令窗口输入开始安装
pip install torch-2.3.1+cu121-cp310-cp310-win_amd64.whl
install 后面是你下载的torch文件的名称,开始安装torch。
同样的方法下载torchvision,在命令窗口输入
pip install torchvision-0.18.1+cu121-cp310-cp310-win_amd64.whl
install 后面是你下载的torchvison文件的名称,开始安装torchvision。
下载完成后,验证是否安装成功,激活安装pytorch的环境,在该环境下输入 conda list
,有torch和torchvision,且后面显示cuda版本表示安装成功。
检验是否能够使用,同样激活安装pytorch的环境,在该环境下依次输入
python
import torch
torch.cuda.is_available()
显示True表示可用
5 使用配置好的环境(PyCharm)
打开pycharm,点击右下角的环境配置-添加新的解释器-添加本地解释器
选择Conda环境
选择安装的miniconda的conda.exe文件( 一般是在Miniconda\Scripts\路径下)
点击加载环境
点击使用现有环境,选择自己配置好的环境
点击确定,即可在右下角切换自己配置的环境
到此就可以使用GPU版本的pytorch进行深度学习的训练了,快去试试吧
6 问题汇总
6.1 torch的cpu和gpu版本选择?
- CPU 版本:如果你没有 NVIDIA GPU 或不需要 GPU 加速,选择 CPU 版本。
- GPU 版本:如果你有 NVIDIA GPU 并且需要加速计算,选择 GPU 版本。
- CPU 版本的 PyTorch 适用于没有 GPU 或不需要 GPU 加速的场景。它可以在任何机器上运行,但通常比 GPU 版本慢。
6.2 在miniconda prompt中输入cd 路径没有反应?
需要先输入D:
或 E:
进入到磁盘的根目录下再输出cd 路径进入到指定的路径
6.3 C:\Users\Username(你的用户名称)路径下不存在.condarc文件?
先检查路径有没有错误。如果没有错误,可以在miniconda prompt 中输入
conda config --set show_channel_urls yes
会生成.condarc文件
6.4 下载CUDA时提示需要安装Visual Studio?
我们只使用PyTorch进行GPU训练,并且是通过pip下载的,不需要安装Visual Studio。提示安装,可能是因为在安装CUDA时勾选了Visual Studio,在安装时取消勾选就行。
如果后续需要安装Visual Studio,再单独安装即可。