Pytorch的GPU版本安装,在安装anaconda的前提下安装pytorch

本文基于conda安装GPU版本的PyTorch

一、CUDA

1.下载CUDA 点击下载

找到对应的版本进行下载
(1)打开命令提示符查看自己的版本,输入 nvidia-smi
在这里插入图片描述

根据自己的版本进行下载
在这里插入图片描述
(2)点击适合自己的版本进行下载
在这里插入图片描述
在这里插入图片描述
(3)进行安装
在这里插入图片描述
根据提示点击
在这里插入图片描述
在这里插入图片描述
(4)查看系统变量是否自动添加,如没有需要手动添加
在这里插入图片描述
(5)测试环境是否安装成功
打开命令提示符输入nvcc --version
在这里插入图片描述

2.cuDNN 下载

(1)需要先进行登录或注册
(2)进去之后选择适合自己的版本进行下载
在这里插入图片描述
(3)解压下载好的cuDNN,里面有三个文件夹
在这里插入图片描述
(4)将三个文件夹拷贝到cuda的安装目录下(可以参考环境变量中的地址)
默认安装路径:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2

(5)CUDA安装目录拷贝后文件夹如下:
在这里插入图片描述
(6)添加系统环境变量
在path添加如:bin、include、lib、libnvvp

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\libnvvp

(7)验证是否成功
打开命令提示符输入cd命令进入如下目录:cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite
在这里插入图片描述
然后输入.\bandwidthTest.exe
在这里插入图片描述
再输入.\deviceQuery.exe
在这里插入图片描述

二、pytorch下载

1.下载 pytorch

进入pytorch页面之后,往下翻页,找到如下界面
在这里插入图片描述

2.查看cuda版本

打开命令行 输入:nvidia-smi
在这里插入图片描述

3.找到对应的版本

pytorch版本CUDA版本
pytorch1.0.x支持CUDA7.5
pytorch1.1.x支持CUDA8.0
pytorch1.2.x支持CUDA9.0
pytorch1.3.x支持CUDA9.2
pytorch1.4.x支持CUDA10.1
pytorch1.5.x支持CUDA10.2
pytorch1.6x支持CUDA11.0
pytorch1.7x支持CUDA11.0/11.1
pytorch1.8.x支持CUDA11.1/11.2
pytorch1.9x支持CUDA11.1/11.2 /11.3
pytorch1.10.x支持CUDA 11.1/11.2 /11.3/11.4

在这里插入图片描述
在这里插入图片描述

4.安装 (方法一)

1.下载地址torch
2. Anaconda prompt 命令,先进入虚拟环境,然后输入 python,我的 python 版本是3.8

创建虚拟环境

# conda create -n 虚拟环境名 python版本 
conda create -n d2l-zh-GPU python=3.8

激活虚拟环境

#conda activate 虚拟环境名字
conda activate GPU 

在这里插入图片描述
3.参考下载torch
在这里插入图片描述
4.将下载好的torch和torchvision放到一个文件夹下,并用cd命令进入 如果跨盘符 可参考cd命令

cd 路径名

在这里插入图片描述
5.用pip命令安装

pip install "torch-1.10.0+cu113-cp39-cp39-win_amd64.whl"
pip install "torchvision-0.11.1+cu113-cp39-cp39-win_amd64.whl"

4.安装 (方法二)

(1)打开,Anaconda Prompt,创建虚拟环境

# conda create -n 虚拟环境名 python版本
conda create -n d2l-zh-GPU python=3.8

在这里插入图片描述
在这里插入图片描述
(2)进入虚拟环境

# conda activate 虚拟环境名
conda activate d2l-zh-GPU

在这里插入图片描述
(3)安装GPU版本的pytorch
输入第3步中找到对应版本的代码
在这里插入图片描述

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

在这里插入图片描述

5.验证是否安装成功

(1)输入pip list
在这里插入图片描述

(2)输入python,接着输入

import torch
torch.cuda.is_available() # 查看是否成功安装GPU版本

在这里插入图片描述

☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺
我是韩一,用知识认识更多的人,欢迎大家指正!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值