【计算机专业毕设】python基于Hadoop的租房数据分析系统的设计与实现

✍✍计算机毕设编程指导师**
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡
Java、Python、小程序、大数据实战项目集

⚡⚡文末获取源码

python基于Hadoop的租房数据分析系统-研究背景

一、课题背景 在信息技术飞速发展的今天,大数据已成为各行各业决策的重要依据。租房市场作为城市生活的重要组成部分,其数据量庞大且复杂。对于租房数据的深入分析,能够帮助市场参与者更好地理解市场动态,从而做出更明智的决策。然而,传统的数据分析方法在处理如此大规模的数据时显得力不从心,因此,本研究课题“python基于Hadoop的租房数据分析系统的设计与实现”应运而生,旨在通过先进的大数据处理技术,提升租房数据分析的深度和广度。

二、现有解决方案存在的问题 当前市场上的租房数据分析工具多存在数据处理能力有限、分析维度单一、实时性不足等问题。这些问题限制了市场参与者对租房数据的深入挖掘,无法满足日益增长的市场需求。因此,开发一个能够高效处理大规模数据、提供多维度分析、实时反馈市场动态的租房数据分析系统显得尤为必要。

三、课题的研究目的与价值意义 本课题的研究目的在于设计并实现一个基于Python和Hadoop的租房数据分析系统,以解决现有解决方案的不足。课题的理论意义在于探索大数据技术在租房市场分析中的应用,为相关领域的研究提供新的视角和方法。实际意义上,该系统将为房东、租户和政策制定者提供精准的数据支持,优化租房市场的资源配置,促进市场的健康发展。

python基于Hadoop的租房数据分析系统-技术

开发语言:Java+Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

python基于Hadoop的租房数据分析系统-视频展示

【计算机专业毕设】python基于Hadoop的租房数据分析系统的设计与实现

python基于Hadoop的租房数据分析系统-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python基于Hadoop的租房数据分析系统-代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, max

# 初始化Spark会话
spark = SparkSession.builder \
    .appName("Advanced Rental Data Analysis") \
    .getOrCreate()

# 从HDFS读取租房数据(假设数据为CSV格式)
rental_data = spark.read.csv("hdfs://path_to_rental_data/rental_data.csv", header=True, inferSchema=True)

# 数据预处理:过滤掉包含缺失值的行
rental_data_cleaned = rental_data.na.drop()

# 核心业务功能3:按房间类型计算平均租金
average_rent_by_room_type = rental_data_cleaned.groupBy("room_type").agg(avg("price").alias("average_rent"))

# 核心业务功能4:分析不同地区的房源分布情况
listings_distribution_by_location = rental_data_cleaned.groupBy("location").agg(count("listing_id").alias("total_listings"))

# 核心业务功能5:找出最受欢迎的房源(这里以查看次数为标准)
most_popular_listings = rental_data_cleaned.groupBy("listing_id").agg(max("view_count").alias("max_view_count"))

# 根据查看次数排序,并取前5个最受欢迎的房源
top_5_popular_listings = most_popular_listings.orderBy(col("max_view_count").desc()).limit(5)

# 显示结果
average_rent_by_room_type.show()
listings_distribution_by_location.show()
top_5_popular_listings.show()

# 停止Spark会话
spark.stop()

python基于Hadoop的租房数据分析系统-结语

感谢大家对本课题的关注与支持。如果您对我们的研究感兴趣,请不要吝啬您的点赞、投币和转发,让更多的朋友了解我们的工作。同时,我们非常期待在评论区看到您的宝贵意见和讨论,一起探讨租房数据分析的未来。您的每一个互动都是我们前进的动力!

⚡⚡✍✍计算机毕设编程指导师**
Java、Python、小程序、大数据实战项目集
⚡⚡有技术问题或者获取源代码!欢迎在评论区一起交流!
⚡⚡大家点赞、收藏、关注、有问题都可留言评论交流!
⚡⚡有什么问题可以在主页个人空间上↑↑↑联系咨询我~
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值