- 博客(717)
- 资源 (3)
- 收藏
- 关注
原创 [QMT量化交易小白入门]-四十八、核心资产ETF轮动更新标的后,年化收益率达到了202%
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
2025-04-23 10:52:24
66
原创 [QMT量化交易小白入门]-四十七、全球资产轮动年化收益率达到117%,分享最简单的股票量化交易回测框架
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
2025-04-23 10:51:54
3
原创 Python自动化脚本之定时任务与任务调度
APScheduler是一个功能强大的Python库,用于在应用程序中调度定时任务。它提供了丰富的功能和灵活的配置选项,可以轻松应对各种复杂的任务调度需求。与前面介绍的基本方法相比,APScheduler具有更高的可扩展性和可靠性,适用于大规模的企业级应用开发。
2025-04-21 09:59:48
17
原创 [QMT量化交易小白入门]-四十六、年化收益率118%的回测参数,如何用贪心算法挑选50个两两相关性最小的ETF组合
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
2025-04-21 09:58:59
234
原创 深入解析Python调用DeepSeek API
这两行代码定义了API密钥(API_KEY)和模型名称(MODELAPI_KEY是用于访问DeepSeek API的认证密钥,而MODEL指定了要使用的预训练语言模型。在这个例子中,使用的是模型。
2025-04-17 15:56:46
13
原创 使用FastAPI构建高效、优雅的RESTful API
需要定义用户的数据模型。在FastAPI中,可以使用Python的类来表示数据模型,并使用类型提示来指定字段的类型。id: intname: stremail: str上述代码定义了一个名为Useridname和email。其中,id字段表示用户的唯一标识符,name字段表示用户的姓名,email字段表示用户的电子邮件地址。需要定义路由和视图函数,将用户请求映射到相应的处理方法上。在FastAPI中,可以使用装饰器来定义路由和视图函数。
2025-04-17 15:54:33
20
原创 [QMT量化交易小白入门]-四十五、ETF轮动策略中的标的池如何选择,可先用Python计算相关性系数
定义一个名为corr列出需要分析的ETF代码。获取每个ETF的收盘价数据。合并所有ETF的数据。计算相关性矩阵。绘制相关性热力图。
2025-04-16 09:49:42
773
原创 用Python和Backtrader实现量化交易数据获取与处理的深度解析
在量化交易中,数据是构建模型和策略的基础。Backtrader作为一款强大的开源量化交易框架,支持多种数据源和数据格式,使得数据获取变得灵活而高效。Backtrader支持的数据源丰富多样,包括本地文件、在线数据库、API接口等。以下是一些常见的数据源类型及其特点:为了确保数据能够正确地被Backtrader识别和处理,需要遵循一定的数据格式规范。一般来说,数据应包含以下几个关键字段:除了上述基本字段外,根据具体的交易策略和分析需求,还可以包含其他字段,如成交额(Amount)、涨跌幅(Change%)等。
2025-04-16 09:47:13
24
原创 深度解析PythonFlask请求中FailedtodecodeJSONobjectExpectingvalueline1column1char0错误及解决之道
当接收客户端发送的请求数据时,Flask 会尝试按照预设的逻辑对数据进行处理,而 JSON 格式的数据在其中扮演着重要角色。方法试图直接将请求体中的数据解析为 JSON 对象,但如果传入的数据不是有效的 JSON 格式,就会引发 “Failed to decode JSON object: Expecting value: line 1 column 1 (char 0)” 错误。在获取 JSON 数据时,应该添加充分的错误处理机制,以防万一出现解析错误能够给出友好的提示信息并采取适当的措施。
2025-04-16 09:46:36
16
原创 解锁DeepSeekAPI构建智能对话应用的终极指南
现在,定义一个名为api的函数,它接受一个问题字符串作为参数,并返回AI的回答。},],},})
2025-04-16 09:40:22
11
原创 Deepseek接口如何用Python轻松调用并获取智能回答
在使用Deepseek接口之前,需要准备好API密钥以及设置请求头。API密钥是访问Deepseek服务的凭证,而请求头则包含了一些必要的信息,如内容类型和授权方式。
2025-04-15 11:48:16
19
原创 Python流式调用接口实战高效处理http127.0.0.15000stream_text
流式接口是一种允许客户端持续接收服务器端数据的机制。与传统的一次性返回全部数据的接口不同,流式接口会逐步推送数据给客户端。这种方式特别适用于处理大量实时数据的场景,例如实时日志流、实时视频流等。
2025-04-15 11:44:35
17
原创 Python中的GET请求如何优雅地获取传入参数
GET请求是HTTP协议中用于请求数据的一种方法。与POST请求不同,GET请求将数据附加到URL后面,以键值对的形式传递参数。这使得GET请求非常适合于获取资源或查询数据,而不是修改服务器上的数据。使用abort本文详细介绍了如何在Python中使用Flask框架获取GET请求传入的参数,涵盖了从基础概念到实际应用的各个方面。通过掌握这些技巧,你将能够构建更加健壮和高效的Web应用。同时,也探讨了一些高级用法和最佳实践,帮助你写出更加安全和可维护的代码。
2025-04-15 11:43:58
39
原创 [QMT量化交易小白入门]-四十四、年化收益48%的策略要兼容回测和实盘,将实盘改为定时任务的方式
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
2025-04-14 10:10:15
612
原创 实战指南用SpringBoot构建高效的流式接口
Spring Boot是一个基于Spring框架的快速开发工具,它简化了Spring应用的配置和部署过程。通过自动配置和约定大于配置的原则,开发者可以更专注于业务逻辑的实现。本文详细介绍了如何使用Spring Boot构建一个高性能的流式接口,包括基础设置、流式接口的实现、优化策略、安全性考虑、性能优化以及监控与日志等方面。通过这些步骤,你可以快速搭建一个可靠且高效的流式API服务。
2025-04-14 09:50:52
18
原创 Python代码相关关系矩阵的三种展示热力图-条形图
Seaborn提供了丰富的参数来自定义热力图的样式。例如,可以使用cbar_kws参数来自定义颜色条的属性,使用linecolor和linewidth参数来设置网格线的样式。此外,还可以使用Matplotlib的功能来进一步自定义热力图的外观。# 自定义热力图样式cbar_kws={'label': '相关系数'}, linecolor='black', linewidths=0.5)plt.title('自定义热力图')plt.show()
2025-04-11 10:44:30
141
原创 ETF相关性系数Python代码实战
相关性系数是衡量两个变量之间线性相关程度的统计指标,取值范围在 -1 到 1 之间。当相关性系数为 1 时,表示两个变量完全正相关;当相关性系数为 -1 时,表示两个变量完全负相关;当相关性系数为 0 时,表示两个变量之间不存在线性相关关系。
2025-04-11 10:22:50
23
原创 Python代码缩进统一规范
通过统一的4个空格缩进,可以直观地看到内外循环的层次关系以及条件判断所属的循环层级,从而快速梳理出代码的执行逻辑。相反,如果缩进混乱,不同层级的代码交织在一起,即使是经验丰富的程序员也会在理解代码意图上花费大量不必要的时间,增加调试和修改的难度。在一些编辑器中,Tab键对应的空白宽度可能比预期的要宽或窄,这就破坏了代码的整齐性和可读性,甚至可能引发缩进错误。这种对缩进严格的依赖,使得缩进成为Python语法不可分割的一部分,任何违背缩进规则的行为都会导致程序无法正常运行。如果缩进不一致,比如将。
2025-04-10 21:05:34
55
原创 解读json.loads函数参数
函数的主要作用是将包含JSON文档的字符串(str)、字节序列(bytes)或字节数组(bytearray)实例反序列化为相应的Python对象。这一过程在Web开发、数据存储与读取等众多领域都至关重要。# 在这里可以根据需要对解码后的字典进行处理return dctprint(decoded_data) # 输出: {'name': 'Alice', 'full_name': 'ALICE'}在这个示例中,创建了一个自定义的解码器类MyDecoder,通过重写其__init__方法来传递自定义的。
2025-04-10 21:04:57
106
原创 [QMT量化交易小白入门]-四十三、暴跌之后,才觉得止损真香,从年化收益率43%抢救回58%
'518880.SH', # 黄金ETF'159985.SZ', # 豆粕ETF'513100.SH', # 纳指ETF'510300.SH', # 沪深300ETF# ...其他ETF代码...C.capital = 100000 # 初始资金A.loss_rate = -0.02 # 止损比例核心功能建立包含12类核心资产的ETF池(商品/海外/宽基/窄基)设置2%的硬止损阈值(经回测验证的最佳参数)10万元初始资金配置(可根据实际调整)专业建议。
2025-04-09 20:01:01
1112
原创 解锁PythonJSON解码双引号与单引号的深度解析
JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。对象:一个无序的键值对集合,类似于Python中的字典。数组:一个有序的值列表,类似于Python中的列表。
2025-04-09 09:56:00
61
原创 Python精准调度每日930-1000每3秒执行一次任务
接下来,定义mutourun()函数。这个函数将在每天的指定时间段内每 3 秒执行一次。
2025-04-09 09:55:22
21
原创 利用 schedule 模块在每日上午每 3 秒执行任务
schedule模块维护了一个任务队列,每个任务都关联着一个特定的时间触发器和对应的执行函数。当系统时间到达任务设定的触发时间时,模块会从队列中取出相应的任务并执行其关联的函数。这种设计模式使得开发者无需过多关注底层的时间处理逻辑,只需专注于定义任务的触发条件和执行内容,大大提高了开发效率。在本例中,我们需要调度执行的方法是mutourun()。print("任务正在执行...")# 这里可以添加实际的业务逻辑,如数据处理、文件操作等。
2025-04-08 20:27:47
38
原创 使用Python的Schedule库实现定时任务,并传递参数给任务函数
设置自定义调度器执行任务在这个示例中,定义了一个自定义调度器,它返回下一次运行任务的时间。然后,使用这个调度器来设置任务的执行时间。
2025-04-08 20:27:10
41
原创 [QMT量化交易小白入门]-四十二、五年年化收益率26%,当日未成交的下单,取消后重新委托
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
2025-04-08 19:06:58
208
原创 PythonJSON解析如何优雅处理嵌套JSON字符串
为了解决这个问题,需要自定义解析策略。一种方法是使用正则表达式来找到并保留那些看起来像JSON字符串但实际上不应被解析的部分。然后,可以手动处理这些部分。
2025-04-07 18:32:39
97
原创 探秘PythonJSON解析深度剖析json.loads处理嵌套JSON字符串的奥秘
JSON是一种基于文本的、自描述的数据格式。它使用键值对的形式来表示数据,其中键是字符串类型,值可以是多种类型的数据,如整数、浮点数、布尔值、字符串、数组和对象等。在上述给定的字符串中,可以看到包含了不同类型的数据,如字符串类型的"name"和"jerry",整数类型的"age"和12,以及一个特殊的字段"friends",其值为一个看似JSON数组的字符串。本文详细探讨了如何使用Python的json.loads函数解析包含嵌套JSON字符串的复杂数据结构。
2025-04-07 18:32:02
82
原创 深度解析Python代码中的广告信息提取与JSON处理
json模块是Python标准库中的一个用于处理JSON数据的模块。它提供了简单而强大的方法来解析JSON格式的数据(通常是从文件或网络中获取的字符串),并将其转换为Python中的数据结构(如字典和列表)。同时,它也可以将Python中的数据结构转换为JSON格式的字符串,以便进行存储或传输。test = '{\'原因\': "广告图片中包含中国移动、中国联通和中国电信的标志,表明这是与通信运营商相关的广告。图片中央的文字\'运营商权益办理\'进一步确认了这一点。
2025-04-02 20:06:49
93
原创 深度解析Python与ActiveMQ的完美交互
在init函数中,创建了一个STOMP连接对象,并将其与一个监听器关联起来。然后,使用提供的用户名和密码连接到ActiveMQ服务器。这里使用了wait=True参数,以确保连接建立后再返回。返回这个连接对象。类实现了一个简单的消息监听器。当收到消息时,它会调用on_message方法,并将消息记录下来。通过本文的详细解析,可以看到如何使用Python通过STOMP协议与ActiveMQ进行通信。介绍了如何初始化连接、发送和接收消息,以及如何处理来自队列和主题的消息。
2025-04-02 20:06:12
107
原创 深入解析使用Python通过STOMP协议接收ActiveMQ消息
接下来,需要定义一个消息监听器类,该类将处理接收到的消息。本文详细介绍了如何使用Python通过STOMP协议与ActiveMQ进行交互,包括初始化连接、定义消息监听器、发送消息到队列和主题、以及从队列和主题接收消息。通过这些示例代码,你可以更好地理解如何在实际应用中使用ActiveMQ进行高效的消息传递。希望这篇文章对你有所帮助!
2025-04-02 20:05:35
96
原创 如何使用Python通过STOMP协议接收ActiveMQ消息
有时候,默认的路径可能并不符合你的需求,比如空间限制或特定项目结构要求。这时,可以通过设置PYTHONPATH环境变量或使用pip的--target选项来指定自定义的包安装目录。这样,所有安装的包都会被放置在指定的目录下,而查询其绝对路径则变得异常简单。查询并理解Python库目录的绝对路径,虽看似微不足道,实则是通往高效开发、精准调试乃至安全部署的重要一步。随着你对这一过程的熟练掌握,无论是在日常开发还是复杂项目构建中,都将如虎添翼,游刃有余。
2025-04-02 10:35:37
91
原创 如何用Python实现SFTP文件传输和远程命令执行
通过以上步骤,成功地实现了使用Python进行SFTP文件传输和远程命令执行的功能。这种方法不仅提高了效率,还减少了手动操作的错误风险。希望这篇文章对你有所帮助,让你在自动化任务的道路上更进一步。
2025-04-02 10:34:59
20
原创 [QMT量化交易小白入门]-四十一、年化收益率99%的策略,如何改写为实盘模式,自动下单
这是整个策略的核心执行函数。它接收一个对象C作为参数,并在这个函数内部完成所有的交易逻辑判断和操作。
2025-04-02 09:57:13
615
原创 Python精准调度每日930-1000每3秒执行任务的高效实现
本文详细介绍了如何使用 Python 的schedule模块实现每日 9:30 至 10:00 之间每 3 秒执行一次方法mutourun()的精准调度。从schedule模块的基本用法入手,逐步深入到实际的代码实现,包括同步和异步两种方式。通过对代码的优化和改进,提高了程序的性能和可靠性,并添加了错误处理和日志记录功能,使其更加适用于实际的生产环境。希望本文能够帮助读者掌握 Python 精准调度的方法和技巧,并在实际应用中发挥重要作用。
2025-04-01 14:31:16
20
原创 [QMT量化交易小白入门]-四十、年化收益率93%,最大回撤5.97%还是年化收益率39.3%,最大回撤3.56%的策略如何选择?
1、核心资产ETF轮动策略的核心在于动态调整投资组合,实现风险分散和收益最大化,如果买入支数太少,会导致风险集中,回撤变大。2、根据归一化后的风险因子计算出每个ETF应分配的资金额度,会按照这个额度买入相应的ETF,这个风险可能会有一定的滞后性,如果要进一步降低回撤,对系统性分险可能要引入债券或者货币类ETF。
2025-03-31 16:03:03
658
原创 Python精准调度使用schedule模块每3秒执行一次任务
接下来,定义一个名为mutourun()的方法。这个方法可以是任何你想要定期执行的操作,例如打印一条消息、执行数据库查询等。这里为了示例简单,让它打印当前时间。def mutourun() : from datetime import datetime print(f"任务执行时间: {def mutourun() : from datetime import datetime print(f"任务执行时间: {
2025-03-31 09:25:03
20
论项目成本管理.doc
2024-03-21
论文练习.doc
2024-03-21
成本管理的理论.doc
2024-03-21
Python实现命令模式、中介者模式和解释器模式.md
2024-03-21
Python实现策略模式、观察者模式和责任链模式.md
2024-03-21
计算机软件论文范文,相同背景不同主题的论文 论软件测试方法和工具的选择.doc
2024-03-21
计算机软件论文范文,相同背景不同主题的论文
2024-03-21
opencv-swig-master.zip
2023-06-25
chromedriver-win32.zip
2023-06-25
wechatbot-main.zip
2023-06-25
bollings.py
2020-08-29
布林带突破策略(基于掘金客户端的python实现)
2020-08-29
TA_Lib-0.4.18-cp36-cp36m-win_amd64.whl
2020-06-14
计算机软考系统分析师论文范文 - 副本 (5).docx
2024-03-21
计算机软考系统分析师论文范文 - 副本 (3).docx
2024-03-21
计算机软考系统分析师论文范文 - 副本 (4).docx
2024-03-21
论企业集成平台的技术与应用.pdf
2024-03-21
计算机软考系统分析师论文范文.docx
2024-03-21
论集成测试及应用论文范文.docx
2024-03-21
计算机软考系统分析师论文范文 - 副本 (2).docx
2024-03-21
计算机软考系统分析师论文范文 - 副本.docx
2024-03-21
论系统的设计中对需求的把握.doc
2024-03-21
软件过程的改进(参考).doc
2024-03-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人