自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 【论文阅读4】FusionGAN: A generative adversarial network for infrared and visible image fusion

本论文提出了一种使用生成对抗网络的融合方法,称为FusionGAN。建立一个发电机和一个传感器之间的对抗游戏,其中发电机的目的是生成一个融合图像的主要红外强度连同额外的可见光梯度,传感器的目的是迫使融合图像有更多的细节存在于可见光图像,这使得最终的融合图像能够同时保持红外图像中的热辐射和可见光图像中的纹理。FusionGAN是一个端对端的模型,避免了传统方法中手动设计复杂的活动水平测量和融合规则。深度卷积GAN(DCGAN)将一类CNN引入到GAN。

2024-04-15 17:17:38 1242

原创 FusionGAN图像融合

先看看使用FusionGAN方法的融合效果(从左至右:可见光、红外、FusionGAN)

2024-04-15 17:11:08 528 1

原创 【论文笔记3】RFN-Nest: An end-to-end residual fusion network for infrared and visible images

设计可学习的融合策略是图像融合领域的一个极具挑战性的问题。前面我们学习的DenseNet就是手工融合策略。本文提出一种新的端对端融合网络架构(RFN-Nest)的红外和可见光图像融合,提出了一种基于残差结构的残差融合网络(RFN),提出了一种新的细节保持损失函数和特征增强损失函数来训练RFN。融合模型的学习是由一个新的两阶段的训练策略,第一阶段,基于创新的嵌套连接(Nest)概念训练自动编码器,第二阶段,利用损失函数来训练RFN。

2024-03-05 22:38:06 2044

原创 【论文阅读2】DenseFuse: A Fusion Approach to Infrared and Visible Images

本文提出了一种用于红外和可见光图像融合问题的新型深度学习架构。该架构由编码网络和解码网络构成,利用编码网络提取图像特征,通过解码网络得到融合图像。编码网络由卷积层和密集块构成,其中每层的输出用作下一层的输入。在此之前的许多基于CNN的融合方法中,只有最后一层的结果被用作图形特征,这种操作会丢失很多有用的信息。

2024-03-05 19:08:13 1426

原创 【论文阅读笔记】DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs

本文提出了一种用于多次曝光图像融合(MEF)的无监督CNN深度学习架构。HDRI(高动态范围成像)是一种摄影技术,拍摄出的照片更好更亮,有助于存储人眼可感知的所有范围的光,而不是使用相机实现的有限范围。用于HDR图像生成的方法被称为多曝光融合(MEF)。

2024-03-02 18:17:16 1378

原创 tensorboard : 无法将“tensorboard”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。

tensorboard : 无法将“tensorboard”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。注意:首先检查是否是在tensorboard所在的环境下运行的,如果不是,是默认的base环境,需要通过代码(conda activate+虚拟环境)

2024-02-02 11:41:09 1811 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除