RFN-Nest: An end-to-end residual fusion network for infrared and visible images
RFN-Nest:红外与可见光图像的端对端残差融合网络
宝子们,今天学习了RFN-Nest这篇文献,和上一篇的DenseFuse同一个作者。下面是我的学习记录,希望对各位宝子们有所帮助~
介绍
设计可学习的融合策略是图像融合领域的一个极具挑战性的问题。前面我们学习的DenseNet就是手工融合策略。
本文提出一种新的端对端融合网络架构(RFN-Nest)的红外和可见光图像融合,提出了一种基于残差结构的残差融合网络(RFN),提出了一种新的细节保持损失函数和特征增强损失函数来训练RFN。融合模型的学习是由一个新的两阶段的训练策略,第一阶段,基于创新的嵌套连接(Nest)概念训练自动编码器,第二阶段,利用损失函数来训练RFN。
主要贡献
1、提出了一种新的残差融合网络(RFN)来代替手工的融合策略;
2、由于特征提取和特征重构能力是编码器和解码器网络的关键,因此设计了一个两阶段的训练策略来设计网络;
3、设计了一个能够保留图像细节的损失函数,以及一个增强损失函数的特征来训练RFN网络。