【论文笔记3】RFN-Nest: An end-to-end residual fusion network for infrared and visible images

文章介绍了RFN-Nest,一种新型的端到端融合网络,用于红外与可见光图像融合。它采用残差结构和两阶段训练策略,包括一个自动编码器预训练阶段和RFN网络细化阶段,以优化细节保留和特征增强。实验结果通过多个质量指标验证了其在图像融合方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RFN-Nest: An end-to-end residual fusion network for infrared and visible images

RFN-Nest:红外与可见光图像的端对端残差融合网络

宝子们,今天学习了RFN-Nest这篇文献,和上一篇的DenseFuse同一个作者。下面是我的学习记录,希望对各位宝子们有所帮助~

介绍

设计可学习的融合策略是图像融合领域的一个极具挑战性的问题。前面我们学习的DenseNet就是手工融合策略。

本文提出一种新的端对端融合网络架构(RFN-Nest)的红外和可见光图像融合,提出了一种基于残差结构的残差融合网络(RFN),提出了一种新的细节保持损失函数和特征增强损失函数来训练RFN。融合模型的学习是由一个新的两阶段的训练策略,第一阶段,基于创新的嵌套连接(Nest)概念训练自动编码器,第二阶段,利用损失函数来训练RFN。

主要贡献

1、提出了一种新的残差融合网络(RFN)来代替手工的融合策略;

2、由于特征提取和特征重构能力是编码器和解码器网络的关键,因此设计了一个两阶段的训练策略来设计网络;

3、设计了一个能够保留图像细节的损失函数,以及一个增强损失函数的特征来训练RFN网络。

融合网络架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值