看法和思考
- Coze 真的太方便了,没有什么编程基础,也能在两天内搭建出一个帮助软件工程学生面试笔试的智能体,这在以前是不敢想象的。
- 它让我切实感受到了 AI 技术的强大和便捷,能够将大模型等先进技术整合起来,无需自己去处理复杂的技术细节,就能实现一个具有实际功能的智能体。
- 在搭建过程中,我也意识到智能体的功能和表现很大程度上依赖于我们对知识库的构建和对大模型的运用方式。如果知识库不完善或者大模型的指令设置不合理,智能体的回答可能就不够准确或有用。
技巧总结
- 明确需求和流程:在开始搭建之前,要先明确智能体的具体功能和使用流程。比如我搭建的智能体主要是针对软件工程学生面试笔试,那么就要梳理清楚常见的问题类型,以及智能体应该如何回答这些问题,是直接给出答案,还是引导学生逐步思考等。
- 合理构建知识库:知识库是智能体的重要支撑,要尽可能收集全面且准确的资料。对于软件工程面试笔试相关的知识,包括数据结构、算法、编程语言、项目经验等方面的内容,都要进行整理和分类,以便智能体能够快速准确地检索到相关信息。
- 巧妙运用大模型指令:大模型是智能体的 “大脑”,通过设置合适的指令可以让它更好地理解用户的问题并生成合理的回答。例如,在提问时要尽量清晰明确,避免模糊的表述,同时可以根据不同的问题类型设置不同的提示模板,引导大模型从不同的角度进行回答。
智能体、大模型、知识库之间的联系
- 智能体就像是一个执行者,它通过感知用户的输入,利用大模型来理解问题和生成回答的逻辑,同时从知识库中获取准确的领域知识,然后将这些信息整合起来,最终为用户提供服务。
- 大模型是智能体的核心驱动力,它提供了强大的语言理解和生成能力,能够处理各种复杂的问题。但大模型也有局限性,比如知识可能不够精准或及时,这就需要知识库来补充。
- 知识库是智能体的 “记忆库”,它存储了特定领域的详细信息和规则,为智能体提供了可靠的知识来源。智能体在与用户交互的过程中,还可以将新获取的知识反馈到知识库中,实现知识库的动态更新,从而让智能体不断学习和成长。
总之,智能体、大模型和知识库三者相互协作、相互补充,共同构成了一个强大的 AI 应用系统。通过 Coze 平台,我们能够很方便地将这三者结合起来,快速搭建出满足各种需求的智能体,为用户提供高效、准确的服务。这也让我看到了 AI 在未来更多领域的应用潜力,激发了我进一步学习和探索 AI 技术的兴趣。