洛谷刷题第一天

P1002 [NOIP2002 普及组] 过河卒

题目描述https://www.luogu.com.cn/problem/P1002

棋盘上 �A 点有一个过河卒,需要走到目标 �B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 �C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,�A 点 (0,0)(0,0)、�B 点 (�,�)(n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 �A 点能够到达 �B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个正整数,分别表示 �B 点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

输入输出样例

输入 #1复制

6 6 3 3

输出 #1复制

6

说明/提示

对于 100%100% 的数据,1≤�,�≤201≤n,m≤20,0≤0≤ 马的坐标 ≤20≤20。

【题目来源】

NOIP 2002 普及组第四题

思路:用动态规划的思想做题,dp数组内存储的是每一个点的路径数,最终的目的地由各个点累加而来,易知从起始点到目的地的行走方式只有向下或者向右,即满足f(i,j)=f(i-1,j)+f(i,j-1)

以下提供C语言代码和C++代码

#include <stdio.h>
//动态规划
long long  dp[21][21];//数据量可能会大,所以开long long 
int flag[21][21];//用于记录能走的
void panduan(int horse_x,int horse_y)//找出所有马控制点,即不能走的点
{
    int dx[8]={-2,-2,-1,-1,1,1,2,2};
    int dy[8]={-1,1,-2,2,-2,2,-1,1};
    for (int i=0;i<8;++i)
    {
        int nx=horse_x+dx[i];
        int ny=horse_y+dy[i];
        if (nx>=0 && ny>=0 && nx<=20 && ny<=20)
        {
            flag[nx][ny]=1;
        }
    }
    flag[horse_x][horse_y]=1;
}
int main()
{
    int bx,by,horse_x,horse_y;
    scanf("%d %d %d %d",&bx,&by,&horse_x,&horse_y);
    panduan(horse_x,horse_y);
    dp[0][0]=1;
    for (int i=0;i<=bx;++i)
    {
        for (int j=0;j<=by;++j)
        {
            if (flag[i][j]==0)
            {
                if (i>0)dp[i][j]+=dp[i-1][j];
                if (j>0) dp[i][j]+=dp[i][j-1];
            }
        }
    }
    printf("%lld\n",dp[bx][by]);
    return 0;
}
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int dx[]= {-2, -2, -1, -1, 1, 1, 2, 2};
const int dy[]= { -1,1,-2,2,-2,2,-1,1 };
ll dp[40][40];
bool flag [40][40];
int main()
{
	int bx, by, horse_x, horse_y;
	cin >> bx >> by >> horse_x >> horse_y;

	for (int i = 0; i < 8; ++i)  flag[horse_x + dx[i]][horse_y + dy[i]] = 1;
	flag[horse_x][horse_y] = 1;
	dp[0][0] = 1;
	for (int i = 0; i <= bx;++i)
	{
		for (int j = 0; j <= by; ++j)
		{
			if (flag[i][j] ==0)
			{
				if (i > 0) dp[i][j] += dp[i - 1][j];
				if (j > 0)  dp[i][j] += dp[i][j - 1];
			}
		}
	}
	cout << dp[bx][by] << endl;
}

P1003 [NOIP2011 提高组] 铺地毯

题目描述https://www.luogu.com.cn/problem/P1003

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 �n 张地毯,编号从 11 到 �n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。

输入格式

输入共 �+2n+2 行。

第一行,一个整数 �n,表示总共有 �n 张地毯。

接下来的 �n 行中,第 �+1i+1 行表示编号 �i 的地毯的信息,包含四个整数 �,�,�,�a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (�,�)(a,b) 以及地毯在 �x 轴和 �y 轴方向的长度。

第 �+2n+2 行包含两个整数 �x 和 �y,表示所求的地面的点的坐标 (�,�)(x,y)。

输出格式

输出共 11 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1

输入输出样例

输入 #1复制

3
1 0 2 3
0 2 3 3
2 1 3 3
2 2

输出 #1复制

3

输入 #2复制

3
1 0 2 3
0 2 3 3
2 1 3 3
4 5

输出 #2复制

-1

说明/提示

【样例解释 1】

如下图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,覆盖点 (2,2)(2,2) 的最上面一张地毯是 33 号地毯。

【数据范围】

对于 30%30% 的数据,有 �≤2n≤2。
对于 50%50% 的数据,0≤�,�,�,�≤1000≤a,b,g,k≤100。
对于 100%100% 的数据,有 0≤�≤1040≤n≤104, 0≤�,�,�,�≤1050≤a,b,g,k≤105。

noip2011 提高组 day1 第 11 题。

思路:通过模拟和暴力的方式,模拟长方形,并且判断要求的点是否在长方形内,一个一个判断,如果遇到可以就更新为当前的地毯(这样一定是最上面的地毯)

#include <stdio.h>
int m[10002][4];
int p[2];
int check(int a, int b ,int c, int d,int e ,int f)
{
    if (e>= a && e<=a+c && f>=b && f<=b+d)
    {
        return 1;
    }
    return 0;
}
int main()
{
    int n;
    scanf("%d",&n);
    for (int i=0;i<n;++i)
    {
        scanf("%d %d %d %d",&m[i][0],&m[i][1],&m[i][2],&m[i][3]);
    }
    scanf("%d %d",&p[0],&p[1]);
    int res=-1;
    for (int j=0;j<n;++j)
    {
        if (check(m[j][0],m[j][1],m[j][2],m[j][3],p[0],p[1]))
        {
            res=j+1;
        }
    }
    printf("%d\n",res);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值