P1002 [NOIP2002 普及组] 过河卒
题目描述https://www.luogu.com.cn/problem/P1002
棋盘上 �A 点有一个过河卒,需要走到目标 �B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 �C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,�A 点 (0,0)(0,0)、�B 点 (�,�)(n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 �A 点能够到达 �B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 �B 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
输入输出样例
输入 #1复制
6 6 3 3
输出 #1复制
6
说明/提示
对于 100%100% 的数据,1≤�,�≤201≤n,m≤20,0≤0≤ 马的坐标 ≤20≤20。
【题目来源】
NOIP 2002 普及组第四题
思路:用动态规划的思想做题,dp数组内存储的是每一个点的路径数,最终的目的地由各个点累加而来,易知从起始点到目的地的行走方式只有向下或者向右,即满足f(i,j)=f(i-1,j)+f(i,j-1)
以下提供C语言代码和C++代码
#include <stdio.h>
//动态规划
long long dp[21][21];//数据量可能会大,所以开long long
int flag[21][21];//用于记录能走的
void panduan(int horse_x,int horse_y)//找出所有马控制点,即不能走的点
{
int dx[8]={-2,-2,-1,-1,1,1,2,2};
int dy[8]={-1,1,-2,2,-2,2,-1,1};
for (int i=0;i<8;++i)
{
int nx=horse_x+dx[i];
int ny=horse_y+dy[i];
if (nx>=0 && ny>=0 && nx<=20 && ny<=20)
{
flag[nx][ny]=1;
}
}
flag[horse_x][horse_y]=1;
}
int main()
{
int bx,by,horse_x,horse_y;
scanf("%d %d %d %d",&bx,&by,&horse_x,&horse_y);
panduan(horse_x,horse_y);
dp[0][0]=1;
for (int i=0;i<=bx;++i)
{
for (int j=0;j<=by;++j)
{
if (flag[i][j]==0)
{
if (i>0)dp[i][j]+=dp[i-1][j];
if (j>0) dp[i][j]+=dp[i][j-1];
}
}
}
printf("%lld\n",dp[bx][by]);
return 0;
}
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int dx[]= {-2, -2, -1, -1, 1, 1, 2, 2};
const int dy[]= { -1,1,-2,2,-2,2,-1,1 };
ll dp[40][40];
bool flag [40][40];
int main()
{
int bx, by, horse_x, horse_y;
cin >> bx >> by >> horse_x >> horse_y;
for (int i = 0; i < 8; ++i) flag[horse_x + dx[i]][horse_y + dy[i]] = 1;
flag[horse_x][horse_y] = 1;
dp[0][0] = 1;
for (int i = 0; i <= bx;++i)
{
for (int j = 0; j <= by; ++j)
{
if (flag[i][j] ==0)
{
if (i > 0) dp[i][j] += dp[i - 1][j];
if (j > 0) dp[i][j] += dp[i][j - 1];
}
}
}
cout << dp[bx][by] << endl;
}
P1003 [NOIP2011 提高组] 铺地毯
题目描述https://www.luogu.com.cn/problem/P1003
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 �n 张地毯,编号从 11 到 �n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 �+2n+2 行。
第一行,一个整数 �n,表示总共有 �n 张地毯。
接下来的 �n 行中,第 �+1i+1 行表示编号 �i 的地毯的信息,包含四个整数 �,�,�,�a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (�,�)(a,b) 以及地毯在 �x 轴和 �y 轴方向的长度。
第 �+2n+2 行包含两个整数 �x 和 �y,表示所求的地面的点的坐标 (�,�)(x,y)。
输出格式
输出共 11 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1
。
输入输出样例
输入 #1复制
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2
输出 #1复制
3
输入 #2复制
3 1 0 2 3 0 2 3 3 2 1 3 3 4 5
输出 #2复制
-1
说明/提示
【样例解释 1】
如下图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,覆盖点 (2,2)(2,2) 的最上面一张地毯是 33 号地毯。
【数据范围】
对于 30%30% 的数据,有 �≤2n≤2。
对于 50%50% 的数据,0≤�,�,�,�≤1000≤a,b,g,k≤100。
对于 100%100% 的数据,有 0≤�≤1040≤n≤104, 0≤�,�,�,�≤1050≤a,b,g,k≤105。
noip2011 提高组 day1 第 11 题。
思路:通过模拟和暴力的方式,模拟长方形,并且判断要求的点是否在长方形内,一个一个判断,如果遇到可以就更新为当前的地毯(这样一定是最上面的地毯)
#include <stdio.h>
int m[10002][4];
int p[2];
int check(int a, int b ,int c, int d,int e ,int f)
{
if (e>= a && e<=a+c && f>=b && f<=b+d)
{
return 1;
}
return 0;
}
int main()
{
int n;
scanf("%d",&n);
for (int i=0;i<n;++i)
{
scanf("%d %d %d %d",&m[i][0],&m[i][1],&m[i][2],&m[i][3]);
}
scanf("%d %d",&p[0],&p[1]);
int res=-1;
for (int j=0;j<n;++j)
{
if (check(m[j][0],m[j][1],m[j][2],m[j][3],p[0],p[1]))
{
res=j+1;
}
}
printf("%d\n",res);
}