第十六届蓝桥杯 2025 C/C++组 产值调整

目录

题目:

题目描述:

题目链接:

思路:

思路详解:

代码:

代码详解:


题目:

题目描述:

题目链接:

P12133 [蓝桥杯 2025 省 B] 产值调整

思路:

思路详解:

观察数据范围发现A,B,C最大为1e9,考试时保险起见我就直接开long long了,防止后续计算出现爆int的错误(实际并不会后面会解释)。同时K最大也为1e9,还是很大的,纯暴力模拟不优化肯定会超时

先暴力模拟题意,单独定义一个函数表示题目的调整操作,每次先定义临时变量把当前a,b,c的值存下来再操作,C++中的整除运算就是下取整(上取整可以用ceil函数),由题要调用这个操作k次,代码敲出来后发现时间复杂度是O(t*k),目前蓝桥官网的测试点信息还不知道,按照洛谷的话暴力就是30%分。我们可以通过打表或者模拟给出的样例找规律优化,调整的操作就是取平均(所以(1e9+1e9)/2不会出现中途爆int),所以三个数会趋近于相同,如果操作次数还没到k但是已经a=b=c,那么后面再操作没有任何意义,此时直接退出就能优化时间

至于优化后的时间复杂度,本人小菜鸡还不知道怎么严谨的求解,这里就把deepseek的分析放这里了:当三个数相等时,后续调整不再变化。实际测试表明,三个数之间的差距会快速收敛到零,每次调整会缩小数值间的差异,通常最多需要几十次调整即可稳定。实际时间复杂度为 O(T×M),其中 M 是收敛所需的调整次数(经验值为约 50 次)

代码:

代码详解:

#include<bits/stdc++.h>
using namespace std;

int t;
int a,b,c,k;

void f()
{
	int tempa=a;  //定义临时变量存储这次操作前的a,b,c 
	int tempb=b;
	int tempc=c;
	a=(tempb+tempc)/2;  //否则a的值改变后会影响后续计算结果 
	b=(tempa+tempc)/2;
	c=(tempa+tempb)/2;
	return;
}

int main()
{
	cin>>t;
	while(t--)
	{
		a=0,b=0,c=0,k=0; //我把a,b,c定义为全局变量,所以每次要初始化 
		scanf("%d %d %d %d",&a,&b,&c,&k);
		for(int i=0;i<k;i++)
		{
			f();
			if(a==b&&b==c) //关键优化,不然比较大的数据会超时 
			{              //没有a==b==c这种写法,加上&& 
				break;
			}
		}
		printf("%d %d %d\n",a,b,c);
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值