目录
题目:
题目描述:
题目链接:
思路:
思路详解:
观察数据范围发现A,B,C最大为1e9,考试时保险起见我就直接开long long了,防止后续计算出现爆int的错误(实际并不会后面会解释)。同时K最大也为1e9,还是很大的,纯暴力模拟不优化肯定会超时
先暴力模拟题意,单独定义一个函数表示题目的调整操作,每次先定义临时变量把当前a,b,c的值存下来再操作,C++中的整除运算就是下取整(上取整可以用ceil函数),由题要调用这个操作k次,代码敲出来后发现时间复杂度是O(t*k),目前蓝桥官网的测试点信息还不知道,按照洛谷的话暴力就是30%分。我们可以通过打表或者模拟给出的样例找规律优化,调整的操作就是取平均(所以(1e9+1e9)/2不会出现中途爆int),所以三个数会趋近于相同,如果操作次数还没到k但是已经a=b=c,那么后面再操作没有任何意义,此时直接退出就能优化时间
至于优化后的时间复杂度,本人小菜鸡还不知道怎么严谨的求解,这里就把deepseek的分析放这里了:当三个数相等时,后续调整不再变化。实际测试表明,三个数之间的差距会快速收敛到零,每次调整会缩小数值间的差异,通常最多需要几十次调整即可稳定。实际时间复杂度为 O(T×M),其中 M 是收敛所需的调整次数(经验值为约 50 次)
代码:
代码详解:
#include<bits/stdc++.h>
using namespace std;
int t;
int a,b,c,k;
void f()
{
int tempa=a; //定义临时变量存储这次操作前的a,b,c
int tempb=b;
int tempc=c;
a=(tempb+tempc)/2; //否则a的值改变后会影响后续计算结果
b=(tempa+tempc)/2;
c=(tempa+tempb)/2;
return;
}
int main()
{
cin>>t;
while(t--)
{
a=0,b=0,c=0,k=0; //我把a,b,c定义为全局变量,所以每次要初始化
scanf("%d %d %d %d",&a,&b,&c,&k);
for(int i=0;i<k;i++)
{
f();
if(a==b&&b==c) //关键优化,不然比较大的数据会超时
{ //没有a==b==c这种写法,加上&&
break;
}
}
printf("%d %d %d\n",a,b,c);
}
return 0;
}