自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 相关类可视化图像

散点图适合展示两个变量之间的关系,简单直观。气泡图在散点图的基础上增加了第三个变量的信息,适合展示三个变量的关系。相关图和热力图适合展示多个变量之间的相关性,尤其是热力图可以直观地展示相关系数的强弱。二维密度图适合展示两个变量的联合分布情况,帮助识别数据中的高密度区域。这些可视化工具在数据分析中各有优势,选择合适的图表可以帮助我们更好地理解数据和挖掘有价值的信息。

2025-06-15 14:46:49 971

原创 数据可视化交互

可视化作品展示成功完成了多个具有交互功能的数据可视化作品,涵盖了不同类型数据和主题的展示。这些作品在视觉呈现上清晰美观,色彩搭配协调,图表类型选择恰当,能够准确反映数据的特征和规律。例如,一份关于销售数据的可视化作品,通过交互式柱状图和折线图的结合,清晰地展示了不同产品在不同时间段的销售情况以及销售额的变化趋势,同时用户还可以通过交互操作筛选特定产品或时间段进行详细分析。交互功能实现实现了多样化的交互功能,包括但不限于数据筛选、排序、缩放、钻取详情等。

2025-06-15 14:45:09 625

原创 地理特征类可视化图像

蜂窝热力地图适合高密度聚合数据,变形地图专注统计比例对比,关联地图揭示流动网络,气泡地图突出离散点数据。工具选择需结合数据规模(Python处理海量数据,Tableau快速交互)和可视化目标(静态报告 vs. 动态探索)。

2025-05-19 20:47:54 864

原创 文本数据可视化

数据预处理是可视化的基础,分词准确性直接影响结果。多方法结合(如词云+主题模型)可互补验证分析结论。交互式可视化(如pyLDAvis)能提升用户探索效率。但是可视化参数敏感,需多次调试(如词云颜色、主题数量)。高维数据(如海量文本)易导致图形信息过载。部分方法依赖先验知识(如LDA主题数需人工指定)。未来引入自动化参数优化算法(如遗传算法)减少人工干预。结合深度学习模型(如BERT)提取语义特征,提升可视化深度。探索动态可视化(如词云随时间演化)增强时序分析能力。

2025-05-12 11:15:36 672

原创 时间趋势类可视化图像

地平线图通常用于展示未来预测或目标与实际进展的对比。比如公司设定未来几年的收入目标,用地平线图来显示实际完成情况与目标的差异。这种图一般有两条线,一条是实际数据,另一条是预测或目标线,可能还会有置信区间或者阴影区域表示预测的不确定性。河流图是用来展示多个类别随时间变化的排序变化,尤其是强调排名的变化。比如不同产品在几个月内的市场份额排名变化,用不同颜色的流线表示,可能还会调整Y轴的位置来避免线条交叉,这样看起来更清晰。不过用户提到的河流图可能还有其他变种,比如ThemeRiver,可能需要进一步确认。

2025-05-06 19:40:25 853

原创 关系数据的可视化

工具选择Tableau适合快速生成静态报告,Plotly/D3.js适合交互式探索,SQL+Metabase适合数据库直连分析。可视化原则少即是多:优先展示核心指标,避免冗余信息。语义清晰:轴标签、图例需明确,避免误导(如饼图代替柱状图表示小百分比)。关系数据特性:主外键关联适合网络图,多维字段对比推荐平行坐标系或热力图。未来改进方向自动化建模:结合机器学习(如聚类、关联规则)自动生成可视化建议。实时可视化:集成流数据处理工具(如Kafka+Apache Flink)支持动态数据更新。

2025-04-28 11:00:08 581

原创 分布类数据可视化图

直方图:以矩形展示数据在不同区间的频数或频率分布。通过柱子高度直观呈现数据在各区间的集中情况,能清晰看出数据分布的大致范围和主要集中区域,但对数据分布的平滑性展示不足,区间划分会影响其对数据分布细节的呈现。密度图(核密度估计图本质上也是密度图的一种形式):利用核函数对数据进行平滑处理,以连续曲线展示数据的概率密度分布。相比直方图,它能更细腻地反映数据的分布形状、峰值和分布趋势,不受固定区间划分的限制,但难以精确获取具体数值对应的频率。

2025-04-20 21:07:08 1651

原创 比例数据可视化

本次实验通过比例数据可视化绘制板块层级图,成功地实现了对数据的直观展示和分析。在实验过程中,我们掌握了数据预处理、图表绘制和结果分析等关键步骤,并获得了有价值的发现和结论。同时,通过本次实验,我们也深刻认识到了数据可视化的重要性和应用价值。在今后的工作和学习中,我们将继续探索和应用数据可视化技术,为解决实际问题提供更好的支持。

2025-04-14 20:52:36 676

原创 局部与整体类可视化图像

准确性在数据准确的前提下,这些可视化图像能够准确地反映各部分与整体的关系。但如果数据本身存在误差或不完整,那么图像所传达的信息也会产生偏差。例如,在制作饼图时,如果各部分数值之和不等于总体数值,就会导致图像不能正确表示真实的比例关系。直观性这类图像以直观的方式展示了复杂的数据关系,使用户能够快速理解数据的构成和比例情况。即使是非专业人士,也能轻松地从图像中获取关键信息,比如从圆堆积图中可以直接看出不同年份各行业产值的变化趋势以及每年各行业产值在总产值中的占比情况。适用性不同的图像有其特定的适用场景。

2025-04-06 23:56:48 1948

原创 时间数据的可视化

1.掌握时间数据在大数据中的应用2.掌握时间数据可视化图表表示3. 利用 Python 程序实现堆叠柱形图可视化。

2025-03-31 20:53:03 1961

原创 比较与排序类相关的可视化图像

通过长方形的长度来表示数据的大小,长度越长表示数值越大。通常用于展示不同类别之间的数据对比将柱状图围绕一个中心点排列成环形,每个柱子代表一个类别的数据,通过柱子的长度和颜色来展示数据的差异。一种用于展示数据对比和目标达成情况的可视化图表,由多个水平或垂直的条形组成,每个条形代表一个指标或项目,通过不同颜色或长度来表示实际值与目标值的关系。由两个柱状图组合而成,中间用线连接,形似哑铃。通常用于展示同一类别在不同时间点或不同条件下的数据变化,或者对比两个相关数据集的差异。

2025-03-23 19:14:51 614

原创 Tableau数据可视化入门 D3数据可视化基础

通过Tableau实验,掌握了Tableau的基本操作流程,如数据连接、字段类型转换、筛选器使用以及图表生成与调整。Tableau的拖放式操作直观易用,适合初学者快速上手。Tableau提供了丰富的图表类型,通过“智能显示”功能可快速切换不同图表类型,找到最适合数据展示的形式。学会了创建和调整仪表板,实现多维度数据的同步展示,增强了数据故事的叙述能力。通过D3实验,深入理解了D3.js作为数据驱动文档的原理,如何通过数据操作DOM来生成图形。

2025-03-17 19:37:11 799

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除