局部与整体类可视化图像

文章目录

  • 一、韦恩图(Venn Diagram)
  • 二、饼图(Pie Chart)
  • 三、环形图(Ring Chart/Donut Chart)
  • 四、旭日图(Sunburst Chart)
  • 五、圆堆积图(Circular Stacked Bar Chart)
  • 总结

一、韦恩图(Venn Diagram)

内容
使用多个重叠的圆来表示不同集合,通过圆之间的相交、相离等关系直观地展示集合间的交集、并集和补集等逻辑关系。
特点
使用多个重叠的圆来表示不同集合之间的关系,直观展示集合之间的交集、并集和补集等关系。
能够清晰地呈现元素在不同集合间的分布情况,适用于显示少量集合(一般不超过3 - 4个)之间的复杂关系。
当集合数量增多或元素分布复杂时,图形可能会变得混乱,难以解读。
应用场景
用于分析数据的分类和关联性,例如在市场调研中展示不同消费群体对不同产品的偏好重叠情况。
在学术研究中,比较不同研究样本的特征交集,如不同疾病症状与病因之间的关联分析。
代码

import matplotlib.pyplot as plt
from matplotlib_venn import venn2
# 定义两个集合的数据
set1 = {'A', 'B', 'C'}
set2 = {'B', 'C', 'D'}
# 创建韦恩图
venn2([set1, set2], ('Set 1', 'Set 2'))
# 显示图形
plt.show()

运行结果
请添加图片描述

二、饼图(Pie Chart)

内容
将一个圆分割成多个扇形,每个扇形的大小与对应类别的数据比例成正比,用于展示各部分占总体的比例关系
特点
将一个圆分割成多个扇形,每个扇形的大小与对应类别的数据比例成正比,能直观地展示各部分占总体的比例关系。
易于理解和解读,适合展示相对比例信息,但当类别较多或比例差异不大时,可能难以准确比较各部分大小。
应用场景
常用于展示市场份额、预算分配、调查结果中各选项的占比等,例如展示不同品牌手机在市场中的占有率。
代码

import matplotlib.pyplot as plt
# 定义数据和标签
labels = ['Category A', 'Category B', 'Category C']
sizes = [15, 30, 55]
# 创建饼图
plt.pie(sizes, labels=labels, autopct='%1.1f%%')
# 显示图形
plt.show()

结果
请添加图片描述

三、环形图(Ring Chart/Donut Chart)

内容
类似于饼图,中心为空形成环形,可突出显示数据的比例关系,中心空白区域可用于添加额外信息。
特点
类似于饼图,但中心为空,形成一个环形,可突出显示数据的比例关系,同时中心空白区域可用于添加额外的信息,如标题、说明等。
相比饼图,环形图在视觉上更加美观和清晰,尤其在展示较多类别且比例差异不大的数据时更具优势。
应用场景
适用于展示数据的构成比例,同时需要在中心位置补充相关信息的场景,如展示公司各部门费用占总预算的比例,并在中心注明总预算金额。
代码

import matplotlib.pyplot as plt
# 定义数据和标签
labels = ['Part A', 'Part B', 'Part C', 'Part D']
sizes = [20, 30, 25, 25]
# 创建环形图
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, wedgeprops=dict(width=0.4))
plt.axis('equal')  # 确保图形是圆形
# 添加中心文本
plt.text(0.5, 0.5, 'Total: 100%', ha='center', va='center')
# 显示图形
plt.show()

结果
请添加图片描述

四、旭日图(Sunburst Chart)

内容
由多层同心圆组成,从外到内逐层展示数据的层次结构和比例关系。
特点
是一种层次化的饼图,由多层同心圆组成,从外到内逐层展示数据的层次结构和比例关系。
能够清晰地展示数据的层级关系和各层级之间的比例分布,适合处理具有层次结构的数据,如组织架构、产品分类等。
当层次过多或数据量大时,可能会导致图形过于复杂,影响可读性。
应用场景
用于分析复杂的层次结构数据,例如展示公司的组织架构及各部门人员比例,或者展示不同产品类别及其子类别的销售占比。
代码

import plotly.express as px
# 定义数据
data = {
    'Category': ['A', 'A', 'B', 'B', 'C', 'C'],
    'Subcategory': ['X', 'Y', 'X', 'Y', 'X', 'Y'],
    'Value': [10, 20, 30, 40, 50, 60]
}
# 创建旭日图
fig = px.sunburst(data, path=['Category', 'Subcategory'], values='Value')
# 显示图形
fig.show()

结果
请添加图片描述

五、圆堆积图(Circular Stacked Bar Chart)

内容
将堆积柱状图以圆形的方式呈现,每个类别的数据以扇形堆积的形式展示,能直观地比较不同类别之间的数据差异以及各类别内部的数据构成。
特点
将堆积柱状图以圆形的方式呈现,每个类别的数据以扇形堆积的形式展示,能够直观地比较不同类别之间的数据差异以及各类别内部的数据构成。
结合了柱状图和饼图的优点,既可以展示数据的总量对比,又能体现各部分在整体中的占比关系。
应用场景
适用于需要同时展示数据的总量和构成比例的情况,例如比较不同年份各行业的产值及其在总产值中的占比。
代码

import plotly.express as px
# 定义数据
data = {
    'Year': ['2020', '2020', '2021', '2021'],
    'Industry': ['A', 'B', 'A', 'B'],
    'Value': [100, 150, 200, 250]
}
# 创建圆堆积图
fig = px.bar_polar(data, r='Value', theta='Industry', color='Year', template='plotly_dark')
# 显示图形
fig.show()

结果
请添加图片描述

总结

准确性
在数据准确的前提下,这些可视化图像能够准确地反映各部分与整体的关系。但如果数据本身存在误差或不完整,那么图像所传达的信息也会产生偏差。例如,在制作饼图时,如果各部分数值之和不等于总体数值,就会导致图像不能正确表示真实的比例关系。
直观性
这类图像以直观的方式展示了复杂的数据关系,使用户能够快速理解数据的构成和比例情况。即使是非专业人士,也能轻松地从图像中获取关键信息,比如从圆堆积图中可以直接看出不同年份各行业产值的变化趋势以及每年各行业产值在总产值中的占比情况。
适用性
不同的图像有其特定的适用场景。在选择使用时,要根据数据的特点和分析目的来决定。例如,当需要分析数据的分类和关联性时,韦恩图是一个很好的选择;而如果要展示市场份额等信息,饼图或环形图可能更合适。如果数据具有层次结构,旭日图则能更好地发挥作用;当需要同时展示总量和构成比例时,圆堆积图是首选。
灵活性
无论是通过编程实现还是使用专业软件制作,这些可视化图像都具有一定程度的灵活性。可以通过调整颜色、标签、布局等各种属性来优化图像的显示效果,也可以根据不同的受众和需求对图像进行定制化处理,以更好地传达信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值