代码随想录day34 || 62不同路径 63不同路径2 343整数拆分

动归5步法

1,确定dp数组(dp table)以及下标的含义

2,确定递推公式

3,dp数组如何初始化

4,确定遍历顺序

5,举例推导dp数组

62不同路径

力扣题目链接

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

代码:

class Solution {  
public:  
    int uniquePaths(int m, int n) {  
        // 创建一个 m x n 的二维向量 dp,用于存储每个位置到达的路径数  
        vector<vector<int>> dp(m, vector<int>(n, 0));  
        
        // 初始化第一行,只有一条路径可以到达  
        for(int i = 0; i < n; i++) {  
            dp[0][i] = 1; // 第一行的每个位置都可以从左侧到达  
        }  

        // 初始化第一列,只有一条路径可以到达  
        for(int i = 0; i < m; i++) {  
            dp[i][0] = 1; // 第一列的每个位置都可以从上方到达  
        }  

        // 从第 1 行和第 1 列开始填充剩余的 dp 数组  
        for(int i = 1; i < m; i++) {  
            for(int j = 1; j < n; j++) {  
                // 当前单元格的路径数等于上方单元格和左侧单元格路径数之和  
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];  
            }     
        }  
        
        // 最终结果位于右下角  
        return dp[m - 1][n - 1];  
    }  
};  

按照动归5步法来做

1. 确定dp数组(dp table)以及下标的含义

  • dp数组的定义dp[i][j] 表示从起点 (0, 0) 到达位置 (i, j) 的不同路径数量。
  • 下标的含义i 和 j 分别表示当前在网格中的行和列。

2. 确定递推公式

  • 递推公式:对于任何位置 (i, j),它的路径数可以通过其上方位置 (i-1, j) 和左侧位置 (i, j-1) 的路径数累加得到。所以递推公式为:

dp[i][j]=dp[i−1][j]+dp[i][j−1]dp[i][j]=dp[i−1][j]+dp[i][j−1]

3. dp数组如何初始化

  • 初始化第一行:对于第一行位置 dp[0][j],由于只能从左向右移动,因此每个位置都有且仅有一条路径,所以初始化为在1
  • 初始化第一列:对于第一列位置 dp[i][0],由于只能从上向下移动,因此每个位置都有且仅有一条路径,所以初始化为为 1

4. 确定遍历顺序

  • 遍历顺序:从DP初始化的角度来看,首先初始化第一行和第一列。再从位置 (1,1) 开始,自顶向下(行优先)逐行遍历,且每行从左到右(列优先)遍历。

5. 举例推导dp数组

假设有一个 3 x 3 的网格(即 m = 3n = 3),我们来推导DP数组的值。

初始化阶段:
  • 初始化 dp[0][j] 为 1:

     

    dp = [[1, 1, 1], [0, 0, 0], [0, 0, 0]]

  • 初始化 dp[i][0] 为 1:

     

    dp = [[1, 1, 1], [1, 0, 0], [1, 0, 0]]

递推计算阶段:
  • 计算 dp[1][1]:

dp[1][1]=dp[0][1]+dp[1][0]=1+1=2dp[1][1]=dp[0][1]+dp[1][0]=1+1=2

 

dp = [[1, 1, 1], [1, 2, 0], [1, 0, 0]]

  • 计算 dp[1][2]:

dp[1][2]=dp[0][2]+dp[1][1]=1+2=3dp[1][2]=dp[0][2]+dp[1][1]=1+2=3

 

dp = [[1, 1, 1], [1, 2, 3], [1, 0, 0]]

  • 计算 dp[2][1]:

dp[2][1]=dp[1][1]+dp[2][0]=2+1=3dp[2][1]=dp[1][1]+dp[2][0]=2+1=3

 

dp = [[1, 1, 1], [1, 2, 3], [1, 3, 0]]

  • 计算 dp[2][2]:

dp[2][2]=dp[1][2]+dp[2][1]=3+3=6dp[2][2]=dp[1][2]+dp[2][1]=3+3=6

 

dp = [[1, 1, 1], [1, 2, 3], [1, 3, 6]]

通过上述步骤,最终得到 3 x 3 网格的不同路径总数为 6,存储在 dp[2][2] 中。

63不同路径

力扣题目链接

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

代码:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid)
    {
      int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
            return 0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

343整数拆分

力扣题目链接

题目描述:

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

代码;

class Solution {  
public:  
    int integerBreak(int n) {  
        // 1. 定义dp数组,dp[i]表示将正整数i拆分后的最大乘积  
        vector<int> dp(n + 1, 0);  

        // 3. 初始化dp数组  
        dp[2] = 1; // 当i为2时,dp[2] = 1  

        // 4. 开始递推计算dp数组  
        for (int i = 3; i <= n; ++i) {  
            // 枚举所有可能的拆分点j  
            for (int j = 1; j < i; ++j) {  
                // 2. 应用递推公式:dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]))  
                dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]));  
            }  
        }  

        // 返回将正整数n拆分后的最大乘积  
        return dp[n];  
    }  
};

1. 确定dp数组(dp table)以及下标的含义

  • dp数组的定义:定义一个一维数组 dp,其中 dp[i] 表示将正整数 i 拆分成至少两个正整数和之后,这些正整数的最大乘积。
  • 下标的含义i 表示正整数的当前数值。

2. 确定递推公式

  • 对于每个正整数 i
    • 我们将其拆分成 j 和 i-j(其中 1 <= j < i)。
    • 我们会考虑两种情况:
      • 不拆分 i-j,即直接使用 j * (i-j)
      • 拆分 i-j,即 j * dp[i-j]
    • 取这两种情况的最大值,并与 dp[i] 取最大值。递推公式为:

dp[i]=max⁡(dp[i],max⁡(j∗(i−j),j∗dp[i−j]))dp[i]=max(dp[i],max(j∗(i−j),j∗dp[i−j]))

3. dp数组如何初始化

  • dp数组初始化
    • dp[2] = 1:即将数字 2 拆分为 1 + 1,最大乘积为 1

4. 确定遍历顺序

  • 遍历顺序:从 3 到 n 依次计算每个 i 的最大乘积。
  • 对于每个 i,枚举所有可能的拆分点 j1 到 i-1)。

5. 举例推导dp数组

假设 n = 10,我们推导dp数组的值。

初始化:
  • dp 数组初始为: [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
递推计算步骤:

计算 dp[3]:

  • 拆分(1, 2):最大值为 max(1*2, 1*1) = 2
    • dp[3] = 2

计算 dp[4]:

  • 拆分(1, 3):最大值为 max(1*3, 1*2) = 3
  • 拆分(2, 2):最大值为 max(2*2, 2*1) = 4
    • dp[4] = 4

计算 dp[5]:

  • 拆分(1, 4):最大值为 max(1*4, 1*4) = 4
  • 拆分(2, 3):最大值为 max(2*3, 2*2) = 6
    • dp[5] = 6

计算 dp[6]:

  • 拆分(1, 5):最大值为 max(1*5, 1*6) = 6
  • 拆分(2, 4):最大值为 max(2*4, 2*4) = 8
  • 拆分(3, 3):最大值为 max(3*3, 3*2) = 9
    • dp[6] = 9

计算 dp[7]:

  • 拆分(1, 6):最大值为 max(1*6, 1*9) = 9
  • 拆分(2, 5):最大值为 max(2*5, 2*6) = 12
  • 拆分(3, 4):最大值为 max(3*4, 3*4) = 12
    • dp[7] = 12

计算 dp[8]:

  • 拆分(1, 7):最大值为 max(1*7, 1*12) = 12
  • 拆分(2, 6):最大值为 max(2*6, 2*9) = 18
  • 拆分(3, 5):最大值为 max(3*5, 3*6) = 18
  • 拆分(4, 4):最大值为 max(4*4, 4*4) = 16
    • dp[8] = 18

计算 dp[9]:

  • 拆分(1, 8):最大值为 max(1*8, 1*18) = 18
  • 拆分(2, 7):最大值为 max(2*7, 2*12) = 24
  • 拆分(3, 6):最大值为 max(3*6, 3*9) = 27
  • 拆分(4, 5):最大值为 max(4*5, 4*6) = 24
    • dp[9] = 27

计算 dp[10]:

  • 拆分(1, 9):最大值为 max(1*9, 1*27) = 27
  • 拆分(2, 8):最大值为 max(2*8, 2*18) = 36
  • 拆分(3, 7):最大值为 max(3*7, 3*12) = 36
  • 拆分(4, 6):最大值为 max(4*6, 4*9) = 36
  • 拆分(5, 5):最大值为 max(5*5, 5*6) = 30
    • dp[10] = 36

最终结果为 dp[10] = 36

  • 30
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值