代码随想录day37|| 52携带研究材料 518零钱兑换Ⅱ 377组合总和Ⅳ 57爬楼梯

完全背包理论基础:

给定 n 个物品,第 i 个物品的重量为 wgt[i−1]、价值为 val[i−1] ,和一个容量为 cap 的背包。每个物品可以重复选取,问在限定背包容量下能放入物品的最大价值

首先再回顾一下01背包的核心代码

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

组合与排列问题!!!

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

52携带研究材料 

卡码网题目链接

题目描述:

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的重量,并且具有不同的价值。

小明的行李箱所能承担的总重量为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料可以选择无数次,并且可以重复选择。

输入描述

第一行包含两个整数,N,V,分别表示研究材料的种类和行李空间 

接下来包含 N 行,每行两个整数 wi 和 vi,代表第 i 种研究材料的重量和价值

输出描述

输出一个整数,表示最大价值。

输入示例

4 5
1 2
2 4
3 4
4 5

输出示例

10

这题就是简单的完全背包问题:

代码:

#include<iostream>  
#include<vector>  
using namespace std;  

int main() {  
    // N是物品数量, V是背包的最大承重  
    int N, V;  
    cin >> N >> V;  
    
    // 用于存储物品的重量和价值  
    vector<int> weight;  
    vector<int> value;  
    
    // 输入每个物品的重量和价值  
    for (int i = 0; i < N; i++) {  
        int w; // 物品重量  
        int v; // 物品价值  
        cin >> w >> v;  
        weight.push_back(w);  
        value.push_back(v);  
    }  
    
    // dp数组,用于存储在对应容量下,背包可以获取的最大价值  
    vector<int> dp(V + 1, 0);  
    
    // 遍历每一个物品  
    for(int i = 0; i < N; i++) {  
        // 完全背包问题,从当前物品重量到最大重量遍历  
        for(int j = weight[i]; j <= V; j++) {  
            // 转移方程,选择当前物品最大价值比较  
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);  
        }  
    }  
    
    // 输出答案,在最大承重下所能获得的最大价值  
    cout << dp[V] << endl;  
    return 0;  
} 

 

1. 确定dp数组以及下标以及对应值的含义
  • dp[j]表示:在容量为 j 的背包中,可以获得的最大价值。
  • 下标 j 表示当前的背包容量。
2. 确定递推公式
  • 当处理物品 i 时,如果我们选择将该物品放入背包,不再使用已有的容量 j-weight[i] 的最大价值,然后加上当前物品价值 value[i],即有

dp[j]=max⁡(dp[j],dp[j−weight[i]]+value[i])dp[j]=max(dp[j],dp[j−weight[i]]+value[i])

  • 这个公式表示:将当前物品加入背包后,与不加入背包情况下的最大价值进行比较。
3. dp数组如何初始化
  • dp[0] = 0(容量为0时的最大价值当然是0)
  • 其他dp[j]初始化为0,因为在0容量和没有物品时,价值均为0。
4. 确定遍历顺序
  • 外层循环遍历每件物品,即 for(int i = 0; i < N; i++)
  • 内层循环是自重量 weight[i] 开始遍历到背包的最大承重 V 的顺序,即 for(int j = weight[i]; j <= V; j++)
  • 这可以确保每件物品可以被多次使用,符合完全背包的特性。
5. 举例推导dp数组

假设:

  • 背包最大容量 V = 5
  • 物品列表:weight = [1, 2, 3]value = [6, 10, 12]

推导步骤:

  1. 初始 dp = [0, 0, 0, 0, 0, 0]

  2. 处理完第一个物品(重量1,价值6):

    • j = 1dp[1] = max(dp[1], dp[1 - 1] + 6) = 6
    • j = 2dp[2] = max(dp[2], dp[2 - 1] + 6) = 12
    • j = 3dp[3] = max(dp[3], dp[3 - 1] + 6) = 18
    • j = 4dp[4] = max(dp[4], dp[4 - 1] + 6) = 24
    • j = 5dp[5] = max(dp[5], dp[5 - 1] + 6) = 30
    • dp = [0, 6, 12, 18, 24, 30]
  3. 处理第二个物品(重量2,价值10):

    • j = 2dp[2] = max(dp[2], dp[2 - 2] + 10) = 12(不变)
    • j = 3dp[3] = max(dp[3], dp[3 - 2] + 10) = 18(不变)
    • j = 4dp[4] = max(dp[4], dp[4 - 2] + 10) = 24(不变)
    • j = 5dp[5] = max(dp[5], dp[5 - 2] + 10) = 30(不变)
    • dp = [0, 6, 12, 18, 24, 30](不变)
  4. 处理第三个物品(重量3,价值12):

    • j = 3dp[3] = max(dp[3], dp[3 - 3] + 12) = 18(不变)
    • j = 4dp[4] = max(dp[4], dp[4 - 3] + 12) = 24(不变)
    • j = 5dp[5] = max(dp[5], dp[5 - 3] + 12) = 30(不变)
    • dp = [0, 6, 12, 18, 24, 30](不变)

最终,dp[5] = 30,表示在背包最大容量为5的情况下,能获得的最大价值为30。

 518零钱兑换Ⅱ 

力扣题目链接

题目描述:

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。 

题目数据保证结果符合 32 位带符号整数。

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10] 
输出:1

代码:

class Solution {  
public:  
    int change(int amount, vector<int>& coins) {  
        // dp数组,用于存储凑成不同金额的组合数  
        vector<int> dp(amount + 1, 0);  
        // 初始状态:凑成金额0的方法只有1种,即不选任何硬币  
        dp[0] = 1;  
        
        // 遍历每个硬币  
        for(int i = 0; i < coins.size(); i++) {  
            // 遍历金额从当前硬币面额到总金额  
            for(int j = coins[i]; j <= amount; j++) {  
                // 更新dp数组:凑成金额j的方法数增加凑成金额(j - 当前硬币面额)的方法数  
                dp[j] += dp[j - coins[i]];  
            }  
        }  
        
        // 返回凑成总金额amount的方法数  
        return dp[amount];  
    }  
};  
1. 确定dp数组以及下标以及对应值的含义
  • dp[j]表示:凑成金额 j 的不同硬币组合数。
  • 下标 j 表示当前的金额。
2. 确定递推公式
  • 当处理到硬币 coins[i] 时,若选择将其加入组合中,那么可以凑成金额 j 的组合数就可以通过加上凑成金额 j - coins[i] 的组合数得出。因此,递推公式为:

dp[j]=dp[j]+dp[j−coins[i]]dp[j]=dp[j]+dp[j−coins[i]]

  • 这个公式表示:不使用当前硬币的方法数(dp[j])与加入一个当前硬币的方法数(dp[j - \text{coins}[i]])之和。
3. dp数组如何初始化
  • dp[0] = 1:表示凑成金额 0 的只有一种方法,即不选择任何东西。
  • 其他 dp[j] 初始化为 0,因为最初并不知道其他金额的组合数。
4. 确定遍历顺序
  • 外层循环遍历每一种硬币,即 for(int i = 0; i < coins.size(); i++)
  • 内层循环遍历金额从当前硬币面额到目标金额 amount,即 for(int j = coins[i]; j <= amount; j++)
  • 这确保每个硬币都可以被多次使用,符合完全背包的特性。
5. 举例推导dp数组

假设:

  • 总金额 amount = 5
  • 硬币列表 coins = [1, 2, 5]

推导步骤:

  1. 初始 dp = [1, 0, 0, 0, 0, 0](凑成金额0的方法只有1种)

  2. 处理第一个硬币(面额1):

    • j = 1dp[1] = dp[1] + dp[0] = 1
    • j = 2dp[2] = dp[2] + dp[1] = 1
    • j = 3dp[3] = dp[3] + dp[2] = 1
    • j = 4dp[4] = dp[4] + dp[3] = 1
    • j = 5dp[5] = dp[5] + dp[4] = 1
    • 更新 dp = [1, 1, 1, 1, 1, 1]
  3. 处理第二个硬币(面额2):

    • j = 2dp[2] = dp[2] + dp[0] = 2
    • j = 3dp[3] = dp[3] + dp[1] = 2
    • j = 4dp[4] = dp[4] + dp[2] = 3
    • j = 5dp[5] = dp[5] + dp[3] = 3
    • 更新 dp = [1, 1, 2, 2, 3, 3]
  4. 处理第三个硬币(面额5):

    • j = 5dp[5] = dp[5] + dp[0] = 4
    • 更新 dp = [1, 1, 2, 2, 3, 4]

最终,dp[5] = 4,说明可以通过四种不同的组合方式凑成金额5。具体组合为:

  • 使用5个1元
  • 使用1个2元和3个1元
  • 使用2个2元和1个1元
  • 使用1个5元

377组合总和Ⅳ

力扣题目链接
题目描述:

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

示例 1:

输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。

示例 2:

输入:nums = [9], target = 3
输出:0
class Solution {  
public:  
    int combinationSum4(vector<int>& nums, int target) {  
        // dp数组,dp[i]表示凑成和为i的组合的个数  
        vector<int> dp(target + 1, 0);  
        // 初始状态:凑成和为0的组合有1种,即选择不使用任何元素  
        dp[0] = 1;  
        
        // 从1到target遍历,计算每个和的组合数  
        for (int i = 0; i <= target; i++) {  
            // 遍历数组的每个元素nums[j]  
            for (int j = 0; j < nums.size(); j++) {  
                // 如果当前和i减去nums[j]是非负数,说明nums[j]可以参与构成当前和  
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {  
                    // 更新dp[i],将凑成i-nums[j]的组合数加到dp[i]上  
                    dp[i] += dp[i - nums[j]];  
                }  
            }  
        }  

        // 返回凑成和为target的组合总数  
        return dp[target];  
    }  
}; 
1. 确定dp数组以及下标以及对应值的含义
  • dp[i]表示:凑成目标和为 i 的不同组合数。
  • 下标 i 表示当前的目标和。
2. 确定递推公式
  • 当 nums[j] 用于形成总和 i 时,把使用 nums[j] 之前的和 i - nums[j] 的组合数加上

dp[i]=dp[i]+dp[i−nums[j]]dp[i]=dp[i]+dp[i−nums[j]]

  • 这个公式强调了利用之前更小的和来构造当前和的组合方式。
3. dp数组如何初始化
  • dp[0] = 1 表示凑成和0的唯一组合方式是空选,即不选择任何元素。
  • 其他dp[i]初始化为0,因为在没有任何计算之前,其他和的组合数默认为0。
4. 确定遍历顺序
  • 外层循环遍历从0至 target 的目标和 i,即 for(int i = 0; i <= target; i++)
  • 内层循环遍历数组 nums 中的每个元素 j,即 for(int j = 0; j < nums.size(); j++)
  • 使用这种循环结构,确保每个目标和从小到大构建,每个元素都可以多次使用,顺序体现所有可能的排列组合。
5. 举例推导dp数组

假设:

  • target = 4
  • nums = [1, 2, 3]

推导步骤:

  1. 初始 dp = [1, 0, 0, 0, 0](只有一种方式凑成和为0,即不选元素)

  2. 计算和为1:

    • i = 1,使用 nums[0] = 1 → dp[1] = dp[1] + dp[0] = 1
    • 更新 dp = [1, 1, 0, 0, 0]
  3. 计算和为2:

    • i = 2,使用 nums[0] = 1 → dp[2] = dp[2] + dp[1] = 1
    • i = 2,使用 nums[1] = 2 → dp[2] = dp[2] + dp[0] = 2
    • 更新 dp = [1, 1, 2, 0, 0]
  4. 计算和为3:

    • i = 3,使用 nums[0] = 1 → dp[3] = dp[3] + dp[2] = 2
    • i = 3,使用 nums[1] = 2 → dp[3] = dp[3] + dp[1] = 3
    • i = 3,使用 nums[2] = 3 → dp[3] = dp[3] + dp[0] = 4
    • 更新 dp = [1, 1, 2, 4, 0]
  5. 计算和为4:

    • i = 4,使用 nums[0] = 1 → dp[4] = dp[4] + dp[3] = 4
    • i = 4,使用 nums[1] = 2 → dp[4] = dp[4] + dp[2] = 6
    • i = 4,使用 nums[2] = 3 → dp[4] = dp[4] + dp[1] = 7
    • 更新 dp = [1, 1, 2, 4, 7]

57爬楼梯

卡码网题目链接

题目描述:

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢? 

注意:给定 n 是一个正整数。

输入描述

输入共一行,包含两个正整数,分别表示n, m

输出描述

输出一个整数,表示爬到楼顶的方法数。

输入示例

3 2

输出示例

3

代码:

#include<iostream>  
#include<vector>  
using namespace std;  

int main() {  
    int n, m;  
    // 输入楼梯阶数n和最多可爬的阶数m  
    cin >> n >> m;  

    // dp数组,dp[i]表示到达第i阶楼梯的方法数  
    vector<int> dp(n + 1, 0);  
    // 初始状态:达到第0阶只有一种方法(即不动)  
    dp[0] = 1;  

    // 从第0阶到第n阶计算不同的方法数  
    for (int i = 0; i <= n; i++) {  
        // 对于每一个阶数i,从1到m进行遍历,考虑每种可到达的方式  
        for (int j = 1; j <= m; j++) {  
            // 如果从i-j阶能到达i阶(即i-j是非负数)  
            if (i - j >= 0) {  
                // 累加到达i阶的方法数  
                dp[i] += dp[i - j];  
            }  
        }  
    }  

    // 输出到达第n阶的方法数  
    cout << dp[n] << endl;  
    return 0;  
}

 

. 确定dp数组和其含义
  • dp[i] 表示从地面到达第 i 阶的不同方法数。
  • 下标 i 则代表特定的楼梯阶数。
2. 确定递推公式
  • 考虑从第 i-j 阶爬到第 i 阶,其中 1 <= j <= m
  • 递推公式为:

dp[i]=dp[i]+dp[i−j]dp[i]=dp[i]+dp[i−j]

  • 即,我们从第 i-j 阶(如果能到达的话)到达第 i 阶的方法数累加到 dp[i] 中。
3. dp数组如何初始化
  • dp[0] = 1: 表示在第0阶的方法数只有1种,即什么都不做。
  • 其他dp[i]初始为0,因为在计算前,每种方法的计数都需要通过累加进行更新。
4. 确定遍历顺序
  • 外层循环从第0阶到第 n 阶,即 for(int i = 0; i <= n; i++)
  • 内层循环对 1 到 m 的可能步数进行遍历,即 for(int j = 1; j <= m; j++)
  • 此循环结构确保我们计算从每个先前阶数到目标阶数 i 的每一种可能的走法。
5. 举例推导dp数组

假设:

  • n = 5m = 2(最多一次爬2个台阶)

推导步骤:

  1. 初始 dp = [1, 0, 0, 0, 0, 0](只有一种方法到达第0阶)

  2. 计算到达第1阶:

    • 使用1步:dp[1] = dp[1] + dp[0] = 1
  3. 计算到达第2阶:

    • 使用1步:dp[2] = dp[2] + dp[1] = 1
    • 使用2步:dp[2] = dp[2] + dp[0] = 2
  4. 计算到达第3阶:

    • 使用1步:dp[3] = dp[3] + dp[2] = 2
    • 使用2步:dp[3] = dp[3] + dp[1] = 3
  5. 计算到达第4阶:

    • 使用1步:dp[4] = dp[4] + dp[3] = 3
    • 使用2步:dp[4] = dp[4] + dp[2] = 5
  6. 计算到达第5阶:

    • 使用1步:dp[5] = dp[5] + dp[4] = 5
    • 使用2步:dp[5] = dp[5] + dp[3] = 8
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值