完全背包理论基础:
给定 n 个物品,第 i 个物品的重量为 wgt[i−1]、价值为 val[i−1] ,和一个容量为 cap 的背包。每个物品可以重复选取,问在限定背包容量下能放入物品的最大价值
首先再回顾一下01背包的核心代码
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
组合与排列问题!!!
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!
52携带研究材料
题目描述:
小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的重量,并且具有不同的价值。
小明的行李箱所能承担的总重量为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料可以选择无数次,并且可以重复选择。
输入描述
第一行包含两个整数,N,V,分别表示研究材料的种类和行李空间
接下来包含 N 行,每行两个整数 wi 和 vi,代表第 i 种研究材料的重量和价值
输出描述
输出一个整数,表示最大价值。
输入示例
4 5
1 2
2 4
3 4
4 5
输出示例
10
这题就是简单的完全背包问题:
代码:
#include<iostream>
#include<vector>
using namespace std;
int main() {
// N是物品数量, V是背包的最大承重
int N, V;
cin >> N >> V;
// 用于存储物品的重量和价值
vector<int> weight;
vector<int> value;
// 输入每个物品的重量和价值
for (int i = 0; i < N; i++) {
int w; // 物品重量
int v; // 物品价值
cin >> w >> v;
weight.push_back(w);
value.push_back(v);
}
// dp数组,用于存储在对应容量下,背包可以获取的最大价值
vector<int> dp(V + 1, 0);
// 遍历每一个物品
for(int i = 0; i < N; i++) {
// 完全背包问题,从当前物品重量到最大重量遍历
for(int j = weight[i]; j <= V; j++) {
// 转移方程,选择当前物品最大价值比较
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
// 输出答案,在最大承重下所能获得的最大价值
cout << dp[V] << endl;
return 0;
}
1. 确定dp数组以及下标以及对应值的含义
dp[j]
表示:在容量为j
的背包中,可以获得的最大价值。- 下标
j
表示当前的背包容量。
2. 确定递推公式
- 当处理物品
i
时,如果我们选择将该物品放入背包,不再使用已有的容量j-weight[i]
的最大价值,然后加上当前物品价值value[i]
,即有
dp[j]=max(dp[j],dp[j−weight[i]]+value[i])dp[j]=max(dp[j],dp[j−weight[i]]+value[i])
- 这个公式表示:将当前物品加入背包后,与不加入背包情况下的最大价值进行比较。
3. dp数组如何初始化
dp[0] = 0
(容量为0时的最大价值当然是0)- 其他
dp[j]
初始化为0,因为在0容量和没有物品时,价值均为0。
4. 确定遍历顺序
- 外层循环遍历每件物品,即
for(int i = 0; i < N; i++)
- 内层循环是自重量
weight[i]
开始遍历到背包的最大承重V
的顺序,即for(int j = weight[i]; j <= V; j++)
- 这可以确保每件物品可以被多次使用,符合完全背包的特性。
5. 举例推导dp数组
假设:
- 背包最大容量
V = 5
- 物品列表:
weight = [1, 2, 3]
,value = [6, 10, 12]
推导步骤:
-
初始
dp = [0, 0, 0, 0, 0, 0]
-
处理完第一个物品(重量1,价值6):
j = 1
,dp[1] = max(dp[1], dp[1 - 1] + 6) = 6
j = 2
,dp[2] = max(dp[2], dp[2 - 1] + 6) = 12
j = 3
,dp[3] = max(dp[3], dp[3 - 1] + 6) = 18
j = 4
,dp[4] = max(dp[4], dp[4 - 1] + 6) = 24
j = 5
,dp[5] = max(dp[5], dp[5 - 1] + 6) = 30
dp = [0, 6, 12, 18, 24, 30]
-
处理第二个物品(重量2,价值10):
j = 2
,dp[2] = max(dp[2], dp[2 - 2] + 10) = 12
(不变)j = 3
,dp[3] = max(dp[3], dp[3 - 2] + 10) = 18
(不变)j = 4
,dp[4] = max(dp[4], dp[4 - 2] + 10) = 24
(不变)j = 5
,dp[5] = max(dp[5], dp[5 - 2] + 10) = 30
(不变)dp = [0, 6, 12, 18, 24, 30]
(不变)
-
处理第三个物品(重量3,价值12):
j = 3
,dp[3] = max(dp[3], dp[3 - 3] + 12) = 18
(不变)j = 4
,dp[4] = max(dp[4], dp[4 - 3] + 12) = 24
(不变)j = 5
,dp[5] = max(dp[5], dp[5 - 3] + 12) = 30
(不变)dp = [0, 6, 12, 18, 24, 30]
(不变)
最终,dp[5] = 30
,表示在背包最大容量为5的情况下,能获得的最大价值为30。
518零钱兑换Ⅱ
题目描述:
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5] 输出:4 解释:有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2] 输出:0 解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10] 输出:1
代码:
class Solution {
public:
int change(int amount, vector<int>& coins) {
// dp数组,用于存储凑成不同金额的组合数
vector<int> dp(amount + 1, 0);
// 初始状态:凑成金额0的方法只有1种,即不选任何硬币
dp[0] = 1;
// 遍历每个硬币
for(int i = 0; i < coins.size(); i++) {
// 遍历金额从当前硬币面额到总金额
for(int j = coins[i]; j <= amount; j++) {
// 更新dp数组:凑成金额j的方法数增加凑成金额(j - 当前硬币面额)的方法数
dp[j] += dp[j - coins[i]];
}
}
// 返回凑成总金额amount的方法数
return dp[amount];
}
};
1. 确定dp数组以及下标以及对应值的含义
dp[j]
表示:凑成金额j
的不同硬币组合数。- 下标
j
表示当前的金额。
2. 确定递推公式
- 当处理到硬币
coins[i]
时,若选择将其加入组合中,那么可以凑成金额j
的组合数就可以通过加上凑成金额j - coins[i]
的组合数得出。因此,递推公式为:
dp[j]=dp[j]+dp[j−coins[i]]dp[j]=dp[j]+dp[j−coins[i]]
- 这个公式表示:不使用当前硬币的方法数(
dp[j]
)与加入一个当前硬币的方法数(dp[j - \text{coins}[i]]
)之和。
3. dp数组如何初始化
dp[0] = 1
:表示凑成金额 0 的只有一种方法,即不选择任何东西。- 其他
dp[j]
初始化为 0,因为最初并不知道其他金额的组合数。
4. 确定遍历顺序
- 外层循环遍历每一种硬币,即
for(int i = 0; i < coins.size(); i++)
- 内层循环遍历金额从当前硬币面额到目标金额
amount
,即for(int j = coins[i]; j <= amount; j++)
- 这确保每个硬币都可以被多次使用,符合完全背包的特性。
5. 举例推导dp数组
假设:
- 总金额
amount = 5
- 硬币列表
coins = [1, 2, 5]
推导步骤:
-
初始
dp = [1, 0, 0, 0, 0, 0]
(凑成金额0的方法只有1种) -
处理第一个硬币(面额1):
j = 1
:dp[1] = dp[1] + dp[0] = 1
j = 2
:dp[2] = dp[2] + dp[1] = 1
j = 3
:dp[3] = dp[3] + dp[2] = 1
j = 4
:dp[4] = dp[4] + dp[3] = 1
j = 5
:dp[5] = dp[5] + dp[4] = 1
- 更新
dp = [1, 1, 1, 1, 1, 1]
-
处理第二个硬币(面额2):
j = 2
:dp[2] = dp[2] + dp[0] = 2
j = 3
:dp[3] = dp[3] + dp[1] = 2
j = 4
:dp[4] = dp[4] + dp[2] = 3
j = 5
:dp[5] = dp[5] + dp[3] = 3
- 更新
dp = [1, 1, 2, 2, 3, 3]
-
处理第三个硬币(面额5):
j = 5
:dp[5] = dp[5] + dp[0] = 4
- 更新
dp = [1, 1, 2, 2, 3, 4]
最终,dp[5] = 4
,说明可以通过四种不同的组合方式凑成金额5。具体组合为:
- 使用5个1元
- 使用1个2元和3个1元
- 使用2个2元和1个1元
- 使用1个5元
377组合总和Ⅳ
力扣题目链接
题目描述:
给你一个由 不同 整数组成的数组 nums
,和一个目标整数 target
。请你从 nums
中找出并返回总和为 target
的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
示例 1:
输入:nums = [1,2,3], target = 4 输出:7 解释: 所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) 请注意,顺序不同的序列被视作不同的组合。
示例 2:
输入:nums = [9], target = 3 输出:0
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
// dp数组,dp[i]表示凑成和为i的组合的个数
vector<int> dp(target + 1, 0);
// 初始状态:凑成和为0的组合有1种,即选择不使用任何元素
dp[0] = 1;
// 从1到target遍历,计算每个和的组合数
for (int i = 0; i <= target; i++) {
// 遍历数组的每个元素nums[j]
for (int j = 0; j < nums.size(); j++) {
// 如果当前和i减去nums[j]是非负数,说明nums[j]可以参与构成当前和
if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
// 更新dp[i],将凑成i-nums[j]的组合数加到dp[i]上
dp[i] += dp[i - nums[j]];
}
}
}
// 返回凑成和为target的组合总数
return dp[target];
}
};
1. 确定dp数组以及下标以及对应值的含义
dp[i]
表示:凑成目标和为i
的不同组合数。- 下标
i
表示当前的目标和。
2. 确定递推公式
- 当
nums[j]
用于形成总和i
时,把使用nums[j]
之前的和i - nums[j]
的组合数加上
dp[i]=dp[i]+dp[i−nums[j]]dp[i]=dp[i]+dp[i−nums[j]]
- 这个公式强调了利用之前更小的和来构造当前和的组合方式。
3. dp数组如何初始化
dp[0] = 1
表示凑成和0的唯一组合方式是空选,即不选择任何元素。- 其他
dp[i]
初始化为0,因为在没有任何计算之前,其他和的组合数默认为0。
4. 确定遍历顺序
- 外层循环遍历从0至
target
的目标和i
,即for(int i = 0; i <= target; i++)
。 - 内层循环遍历数组
nums
中的每个元素j
,即for(int j = 0; j < nums.size(); j++)
。 - 使用这种循环结构,确保每个目标和从小到大构建,每个元素都可以多次使用,顺序体现所有可能的排列组合。
5. 举例推导dp数组
假设:
target = 4
nums = [1, 2, 3]
推导步骤:
-
初始
dp = [1, 0, 0, 0, 0]
(只有一种方式凑成和为0,即不选元素) -
计算和为1:
i = 1
,使用nums[0] = 1
→dp[1] = dp[1] + dp[0] = 1
- 更新
dp = [1, 1, 0, 0, 0]
-
计算和为2:
i = 2
,使用nums[0] = 1
→dp[2] = dp[2] + dp[1] = 1
i = 2
,使用nums[1] = 2
→dp[2] = dp[2] + dp[0] = 2
- 更新
dp = [1, 1, 2, 0, 0]
-
计算和为3:
i = 3
,使用nums[0] = 1
→dp[3] = dp[3] + dp[2] = 2
i = 3
,使用nums[1] = 2
→dp[3] = dp[3] + dp[1] = 3
i = 3
,使用nums[2] = 3
→dp[3] = dp[3] + dp[0] = 4
- 更新
dp = [1, 1, 2, 4, 0]
-
计算和为4:
i = 4
,使用nums[0] = 1
→dp[4] = dp[4] + dp[3] = 4
i = 4
,使用nums[1] = 2
→dp[4] = dp[4] + dp[2] = 6
i = 4
,使用nums[2] = 3
→dp[4] = dp[4] + dp[1] = 7
- 更新
dp = [1, 1, 2, 4, 7]
57爬楼梯
题目描述:
题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
输入描述
输入共一行,包含两个正整数,分别表示n, m
输出描述
输出一个整数,表示爬到楼顶的方法数。
输入示例
3 2
输出示例
3
代码:
#include<iostream>
#include<vector>
using namespace std;
int main() {
int n, m;
// 输入楼梯阶数n和最多可爬的阶数m
cin >> n >> m;
// dp数组,dp[i]表示到达第i阶楼梯的方法数
vector<int> dp(n + 1, 0);
// 初始状态:达到第0阶只有一种方法(即不动)
dp[0] = 1;
// 从第0阶到第n阶计算不同的方法数
for (int i = 0; i <= n; i++) {
// 对于每一个阶数i,从1到m进行遍历,考虑每种可到达的方式
for (int j = 1; j <= m; j++) {
// 如果从i-j阶能到达i阶(即i-j是非负数)
if (i - j >= 0) {
// 累加到达i阶的方法数
dp[i] += dp[i - j];
}
}
}
// 输出到达第n阶的方法数
cout << dp[n] << endl;
return 0;
}
. 确定dp数组和其含义
dp[i]
表示从地面到达第i
阶的不同方法数。- 下标
i
则代表特定的楼梯阶数。
2. 确定递推公式
- 考虑从第
i-j
阶爬到第i
阶,其中1 <= j <= m
。 - 递推公式为:
dp[i]=dp[i]+dp[i−j]dp[i]=dp[i]+dp[i−j]
- 即,我们从第
i-j
阶(如果能到达的话)到达第i
阶的方法数累加到dp[i]
中。
3. dp数组如何初始化
dp[0] = 1
: 表示在第0阶的方法数只有1种,即什么都不做。- 其他
dp[i]
初始为0,因为在计算前,每种方法的计数都需要通过累加进行更新。
4. 确定遍历顺序
- 外层循环从第0阶到第
n
阶,即for(int i = 0; i <= n; i++)
。 - 内层循环对
1
到m
的可能步数进行遍历,即for(int j = 1; j <= m; j++)
。 - 此循环结构确保我们计算从每个先前阶数到目标阶数
i
的每一种可能的走法。
5. 举例推导dp数组
假设:
n = 5
,m = 2
(最多一次爬2个台阶)
推导步骤:
-
初始
dp = [1, 0, 0, 0, 0, 0]
(只有一种方法到达第0阶) -
计算到达第1阶:
- 使用1步:
dp[1] = dp[1] + dp[0] = 1
- 使用1步:
-
计算到达第2阶:
- 使用1步:
dp[2] = dp[2] + dp[1] = 1
- 使用2步:
dp[2] = dp[2] + dp[0] = 2
- 使用1步:
-
计算到达第3阶:
- 使用1步:
dp[3] = dp[3] + dp[2] = 2
- 使用2步:
dp[3] = dp[3] + dp[1] = 3
- 使用1步:
-
计算到达第4阶:
- 使用1步:
dp[4] = dp[4] + dp[3] = 3
- 使用2步:
dp[4] = dp[4] + dp[2] = 5
- 使用1步:
-
计算到达第5阶:
- 使用1步:
dp[5] = dp[5] + dp[4] = 5
- 使用2步:
dp[5] = dp[5] + dp[3] = 8
- 使用1步: