C++:二叉搜索树

目录

二叉搜索树的性质

二叉搜索树性能

二叉搜索树结构

二叉搜索树的插入

二叉搜索树的查找

二叉搜索树的删除

二叉搜索树的key/value

二叉搜索树key、key/value完整代码


二叉搜索树也叫二叉排序树

之所以叫它搜索树是因为它本身搜索的速度快

二叉搜索树的性质

若它的左子树不为空,则左子树上的所有节点的值都小于根节点的值

若它的右子树不为空,则右子树上的所有节点的值都大于根节点的值

它的左右子树也叫二叉搜索树

STL里的map/set/multimap/multiset系列容器的底层就是二叉搜索树

map/set不支持插入相同值

multimap/multiset支持插入相同值

二叉搜索树性能

由于它的性质,它具有二分查找的优势,但是没有二分查找的限制

二分查找需要在支持下标随机访问的结构中,并且要求有序

在这样的结构中的插入和删除效率就极低

如果这棵树分布的比较平均,那么它的时间复杂度可以达到O(logN)

但如果是这样呢

那么它的时间复杂度最坏会达到O(N)

所以时间复杂度为O(N)

二叉搜索树结构

template<class K>
struct BSTNode
{
	K _key;
	BSTNode<K>* _left;
	BSTNode<K>* _right;

	BSTNode(const K& key)
		:_key(key)
		, _left(nullptr)
		, _right(nullptr)
	{}
};

template<class K>
class BSTree
{
	using Node = BSTNode<K>;
public:

private:
	Node* _root = nullptr;
};

这里需要一个Node结构体作为一个节点,_root指向当前节点

二叉搜索树的插入

代码看着长,但是思路比较简单

bool Insert(const K& key)
{
	if (_root == nullptr)
	{
		_root = new Node(key);
		return true;
	}

	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(key);
	if (parent->_key > key)
	{
		parent->_left = cur;
	}
	else
	{
		parent->_right = cur;
	}

	return true;
}

若树为空,则直接新增节点,赋值给root指针

若树不为空,则需要先找到当前key所应该呆在该树的位置,这个位置选择的规则必须要遵守左小右大的原则

所以定义一个cur指针指向当前节点和一个parent指针指向cur的父亲节点,若当前节点的key值大于插入的key值,那么key值小,需要往左子树去,若当前节点key值小于插入的key值,则往右子树去。若相等,则插入失败(只能有一个相同的key)

找到了key值的插入位置后,只需要确定这个key值需要在parent的左还是在parent的右即可

二叉搜索树的查找

bool Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key > key)
		{
			cur = cur->_left;
		}
		else if (cur->_key < key)
		{
			cur = cur->_right;
		}
		else
		{
			return true;
		}
	}

	return false;
}

二叉搜索树的查找和插入的思路一模一样,甚至比插入还简单

跟插入找位置的思路一样,若能找到值则返回true,否则返回false 

二叉搜索树的删除

删除需要考虑的情况就比较多了

bool Erase(const K& key)
{
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			// 删除
			if (cur->_left == nullptr) // 左为空
			{
				if (cur == _root)
				{
					_root = cur->_right;
				}
				else
				{
					// 需要父亲节点接管右子树
					if (parent->_left == cur)
					{
						parent->_left = cur->_right;
					}
					else
					{
						parent->_right = cur->_right;
					}
				}
				delete cur;
			}
			else if (cur->_right == nullptr) // 右为空
			{
				if (cur == _root)
				{
					_root = cur->_left;
				}
				else
				{
					// 需要父亲节点接管左子树
					if (parent->_left == cur)
					{
						parent->_left = cur->_left;
					}
					else
					{
						parent->_right = cur->_left;
					}
				}
				delete cur;
			}
			else // 都不为空,找左子树的最右节点或右子树的最左节点
			{
				// 找代替节点(右子树最小)
				Node* replaceParent = cur;
				Node* replace = cur->_right;
				while (replace->_left)
				{
					replaceParent = replace;
					replace = replace->_left;
				}

				cur->_key = replace->_key;

				// 需要接管代替节点的右子树
				if (replaceParent->_left == replace)
				{
					replaceParent->_left = replace->_right;
				}
				else
				{
					replaceParent->_right = replace->_right;
				}

				delete replace;
			}

			return true;
		}
	}
	return false;
}

首先和前面的插入和查找一样,先找到我们需要删除的节点

找到后,有三种情况

1. 左子树为空

2. 右子树为空

3. 都不为空

左子树为空

无论右子树是否为空

首先要判断删除节点是否为根节点,若为根节点则直接让右子树作为根

让删除节点的父亲节点指向右子树,具体是父的左还是右需要判断删除节点是在父的左还是右

当父节点接管完右子树后,就可以放心的删除掉删除节点了

右子树为空

无论左子树是否为空

首先要判断删除节点是否为根节点,若为根节点则直接让左子树作为根

让删除节点的父亲节点指向左子树,具体是父的左还是右需要判断删除节点是在父的左还是右

 当父节点接管完左子树后,就可以放心的删除掉删除节点了

都不为空

 我们需要找一个代替节点来代替它当前的位置

这个位置只能是左子树的最大值或者右子树的最小值,这样这个值才能替代它的位置

上面的代码找的是右子树的最小值

从右子树开始通过一个循环一直向左就可以找到那个最小值了

这时候只需要把两者的值交换即可

在删除代替节点的时候需要先把代替节点的父节点的指向处理好,之后就可以放心的删除代替节点了

二叉搜索树的key/value

逻辑和前面的代码基本一致,只需要多增加一个模板参数value,在一些细节的地方处理一下即可

template<class K, class V>
struct BSTNode
{
	K _key;
	V _value;
	BSTNode<K, V>* _left;
	BSTNode<K, V>* _right;

	BSTNode(const K& key, const V& value)
		:_key(key)
		, _value(value)
		, _left(nullptr)
		, _right(nullptr)
	{}
};

template<class K, class V>
class BSTree
{
	using Node = BSTNode<K, V>;

public:
	BSTree() = default;

	BSTree(const BSTree& t)
	{
		_root = Copy(t._root);
	}

	BSTree& operator=(BSTree tmp)
	{
		swap(_root, tmp._root);
		return *this;
	}

	~BSTree()
	{
		Destroy(_root);
		_root = nullptr;
	}

	bool Insert(const K& key, const V& value)
	{
		if (_root == nullptr)
		{
			_root = new Node(key, value);
			return true;
		}

		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(key, value);
		if (parent->_key > key)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}

		return true;
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	bool Erase(const K& key)
	{
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				// 删除
				if (cur->_left == nullptr) // 左为空
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						// 需要父亲节点接管右子树
						if (parent->_left == cur)
						{
							parent->_left = cur->_right;
						}
						else
						{
							parent->_right = cur->_right;
						}
					}
					delete cur;
				}
				else if (cur->_right == nullptr) // 右为空
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						// 需要父亲节点接管左子树
						if (parent->_left == cur)
						{
							parent->_left = cur->_left;
						}
						else
						{
							parent->_right = cur->_left;
						}
					}
					delete cur;
				}
				else // 都不为空,找左子树的最右节点或右子树的最左节点
				{
					// 找代替节点(右子树最小)
					Node* replaceParent = cur;
					Node* replace = cur->_right;
					while (replace->_left)
					{
						replaceParent = replace;
						replace = replace->_left;
					}

					cur->_key = replace->_key;

					// 需要接管代替节点的右子树
					if (replaceParent->_left == replace)
					{
						replaceParent->_left = replace->_right;
					}
					else
					{
						replaceParent->_right = replace->_right;
					}

					delete replace;
				}

				return true;
			}
		}
		return false;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}

	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;

		Destroy(root->_left);
		Destroy(root->_right);

		delete root;
	}

	Node* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;

		Node* newRoot = new Node(root->_key, root->_value);
		newRoot->_left = Copy(root->_left);
		newRoot->_right = Copy(root->_right);

		return newRoot;
	}

private:
	Node* _root = nullptr;
};

二叉搜索树key、key/value完整代码

#pragma once

#include <iostream>
using namespace std;

namespace key
{
	template<class K>
	struct BSTNode
	{
		K _key;
		BSTNode<K>* _left;
		BSTNode<K>* _right;

		BSTNode(const K& key)
			:_key(key)
			, _left(nullptr)
			, _right(nullptr)
		{}
	};

	template<class K>
	class BSTree
	{
		using Node = BSTNode<K>;

	public:
		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}

			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key);
			if (parent->_key > key)
			{
				parent->_left = cur;
			}
			else
			{
				parent->_right = cur;
			}

			return true;
		}

		bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else
				{
					return true;
				}
			}

			return false;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					// 删除
					if (cur->_left == nullptr) // 左为空
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							// 需要父亲节点接管右子树
							if (parent->_left == cur)
							{
								parent->_left = cur->_right;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}
						delete cur;
					}
					else if (cur->_right == nullptr) // 右为空
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							// 需要父亲节点接管左子树
							if (parent->_left == cur)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_left;
							}
						}
						delete cur;
					}
					else // 都不为空,找左子树的最右节点或右子树的最左节点
					{
						// 找代替节点(右子树最小)
						Node* replaceParent = cur;
						Node* replace = cur->_right;
						while (replace->_left)
						{
							replaceParent = replace;
							replace = replace->_left;
						}

						cur->_key = replace->_key;

						// 需要接管代替节点的右子树
						if (replaceParent->_left == replace)
						{
							replaceParent->_left = replace->_right;
						}
						else
						{
							replaceParent->_right = replace->_right;
						}

						delete replace;
					}

					return true;
				}
			}
			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
				return;

			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}

	private:
		Node* _root = nullptr;
	};
}

namespace key_value
{
	template<class K, class V>
	struct BSTNode
	{
		K _key;
		V _value;
		BSTNode<K, V>* _left;
		BSTNode<K, V>* _right;

		BSTNode(const K& key, const V& value)
			:_key(key)
			, _value(value)
			, _left(nullptr)
			, _right(nullptr)
		{}
	};

	template<class K, class V>
	class BSTree
	{
		using Node = BSTNode<K, V>;

	public:
		BSTree() = default;

		BSTree(const BSTree& t)
		{
			_root = Copy(t._root);
		}

		BSTree& operator=(BSTree tmp)
		{
			swap(_root, tmp._root);
			return *this;
		}

		~BSTree()
		{
			Destroy(_root);
			_root = nullptr;
		}

		bool Insert(const K& key, const V& value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key, value);
				return true;
			}

			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key, value);
			if (parent->_key > key)
			{
				parent->_left = cur;
			}
			else
			{
				parent->_right = cur;
			}

			return true;
		}

		Node* Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else
				{
					return cur;
				}
			}

			return nullptr;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					// 删除
					if (cur->_left == nullptr) // 左为空
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							// 需要父亲节点接管右子树
							if (parent->_left == cur)
							{
								parent->_left = cur->_right;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}
						delete cur;
					}
					else if (cur->_right == nullptr) // 右为空
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							// 需要父亲节点接管左子树
							if (parent->_left == cur)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_left;
							}
						}
						delete cur;
					}
					else // 都不为空,找左子树的最右节点或右子树的最左节点
					{
						// 找代替节点(右子树最小)
						Node* replaceParent = cur;
						Node* replace = cur->_right;
						while (replace->_left)
						{
							replaceParent = replace;
							replace = replace->_left;
						}

						cur->_key = replace->_key;

						// 需要接管代替节点的右子树
						if (replaceParent->_left == replace)
						{
							replaceParent->_left = replace->_right;
						}
						else
						{
							replaceParent->_right = replace->_right;
						}

						delete replace;
					}

					return true;
				}
			}
			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
				return;

			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}

		void Destroy(Node* root)
		{
			if (root == nullptr)
				return;

			Destroy(root->_left);
			Destroy(root->_right);

			delete root;
		}

		Node* Copy(Node* root)
		{
			if (root == nullptr)
				return nullptr;

			Node* newRoot = new Node(root->_key, root->_value);
			newRoot->_left = Copy(root->_left);
			newRoot->_right = Copy(root->_right);

			return newRoot;
		}

	private:
		Node* _root = nullptr;
	};
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ragef

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值