[NOIP2001 提高组] 数的划分
题目描述
将整数 n n n 分成 k k k 份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如: n = 7 n=7 n=7, k = 3 k=3 k=3,下面三种分法被认为是相同的。
1
,
1
,
5
1,1,5
1,1,5;
1
,
5
,
1
1,5,1
1,5,1;
5
,
1
,
1
5,1,1
5,1,1.
问有多少种不同的分法。
输入格式
n , k n,k n,k ( 6 < n ≤ 200 6<n \le 200 6<n≤200, 2 ≤ k ≤ 6 2 \le k \le 6 2≤k≤6)
输出格式
1 1 1 个整数,即不同的分法。
样例 #1
样例输入 #1
7 3
样例输出 #1
4
提示
四种分法为:
1
,
1
,
5
1,1,5
1,1,5;
1
,
2
,
4
1,2,4
1,2,4;
1
,
3
,
3
1,3,3
1,3,3;
2
,
2
,
3
2,2,3
2,2,3.
【题目来源】
NOIP 2001 提高组第二题
没有剪枝tle一个数据的code:
#include<iostream>
using namespace std;
const int N=10;
int n,k;
int arr[N];
int res=0;
void dfs(int x,int start,int nowsum){//x是当前枚举到的位置,nowsum是记录当前选了的数的总和
if(nowsum>n) return ;
if(x>k){
if(nowsum==n){
res++;
}
return ;
}
for(int i=start;i<=n;i++){
arr[x]=i;
dfs(x+1,i,nowsum+i);
arr[x]=0;
}
}
int main(){
cin>>n>>k;
dfs(1,1,0);
cout<<res;
}
剪枝后的code:
本题中枚举的数应该是呈现递增趋势的,比如输出的组合应该是1,1,5;1,2,4;1,3,3;2,2,3;所以下一个数应该比前一个数大,如果后一个数和前一个数一样,并且加上前面的数比n大了,那它就不需要往后枚举了。即:nowsum+i*(k-x+1)<=n这一步。
#include<iostream>
using namespace std;
const int N=10;
int n,k;
int arr[N];
int res=0;
void dfs(int x,int start,int nowsum){//x是当前枚举到的位置,nowsum是记录当前选了的数的总和
if(nowsum>n) return ;
if(x>k){
if(nowsum==n){
res++;
}
return ;
}
for(int i=start;nowsum+i*(k-x+1)<=n;i++){
arr[x]=i;
dfs(x+1,i,nowsum+i);
arr[x]=0;
}
}
int main(){
cin>>n>>k;
dfs(1,1,0);
cout<<res;
}