- 博客(3)
- 收藏
- 关注
原创 Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification
(a)~(d) 从 ResNet18 到 DF-ResNet56 的路线图。(a) 原始 ResNet 中的瓶颈块。(b) 用深度卷积代替标准卷积。(c) 下移 32 个通道的 1 ×1 卷积,上移 128 个通道的 1x1 卷积。另外,将深度卷积的通道数从 32 更改为 128。(d) 单独的下采样层放置在残差块之后。单独的 d.s.代表单独下采样。
2024-01-03 22:21:17
445
原创 Depth-First Neural Architecture With Attentive Feature Fusion for Efficient Speaker Verification
1)ResNet/DF-ResNets:在ResNet和DF-ResNets的残差块中,存在二元特征融合,其中采用特征之间的逐元素相加。2)ECAPA-TDNN/DF-ECAPA:对于ECAPA-TDNN和DF-ECAPA,SE-Res2Block中的逐元素加法可以用二进制AFF模块和多层特征聚合中的级联代替可以用多个AFF模块替代。L(X)和G(X)的频率和时间维度对不上,所以是用broadcastting addition。左右分别位顺序AFF(S-AFF)和并行AFF(P-AFF)。
2023-12-28 00:27:35
387
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人