深度学习——多层感知机、欠拟合和过拟合、权重衰减

多层感知机

隐藏层

多层感知机(MLP)通常包括输入层、一个或多个隐藏层以及输出层。输入层接收外部数据,隐藏层对数据进行处理和变换,输出层则产生最终的结果

单隐藏层                                                       多隐藏层

可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制, 使其能处理更普遍的函数关系类型。

激活函数

sigmoid函数

import torch
import matplotlib.pyplot as plt

# 创建自变量x
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)

# 计算y = sigmoid(x)
y = torch.sigmoid(x)

# 绘制sigmoid(x)的图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), y.detach().numpy())
plt.xlabel('x')
plt.ylabel('sigmoid(x)')
plt.title('Sigmoid Activation Function')
plt.grid()
plt.show()

# 清除以前的梯度
if x.grad is not None:
    x.grad.data.zero_()

# 计算y相对于x的梯度
y.backward(torch.ones_like(x), retain_graph=True)

# 绘制sigmoid的梯度图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), x.grad.numpy())
plt.xlabel('x')
plt.ylabel('grad of sigmoid')
plt.title('Gradient of Sigmoid')
plt.grid()
plt.show()

运行结果:

sigmoid(x)的图像                                                 sigmoid(x)的梯度图像(该函数导数图像)

ReLU函数

import torch
import matplotlib.pyplot as plt

# 创建自变量x
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)

# 计算y = relu(x)
y = torch.relu(x)

# 绘制relu(x)的图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), y.detach().numpy())
plt.xlabel('x')
plt.ylabel('relu(x)')
plt.title('ReLU Activation Function')
plt.grid()
plt.show()

# 计算y相对于x的梯度
y.backward(torch.ones_like(x), retain_graph=True)

# 绘制relu的梯度图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), x.grad.numpy())
plt.xlabel('x')
plt.ylabel('grad of relu')
plt.title('Gradient of ReLU')
plt.grid()
plt.show()

运行结果:

relu(x)的图像                                                             relu(x)的梯度图像(该函数导数图像)

tanh函数                                                                                                                                     

import numpy as np
import matplotlib.pyplot as plt

# 定义tanh函数及其导数
def tanh(x):
    return np.tanh(x)

def tanh_derivative(x):
    return 1 - np.tanh(x)**2

# 生成x值
x = np.linspace(-5, 5, 100)

# 计算tanh函数和导数
y_tanh = tanh(x)
y_derivative = tanh_derivative(x)

# 绘制图像
plt.figure(figsize=(12, 6))

# 绘制tanh函数
plt.subplot(1, 2, 1)
plt.plot(x, y_tanh, label='tanh(x)', color='blue')
plt.title('tanh Function')
plt.xlabel('x')
plt.ylabel('tanh(x)')
plt.axhline(0, color='black', lw=0.5, ls='--')
plt.axvline(0, color='black', lw=0.5, ls='--')
plt.grid()
plt.legend()

# 绘制tanh导数
plt.subplot(1, 2, 2)
plt.plot(x, y_derivative, label="tanh'(x)", color='orange')
plt.title('Derivative of tanh Function')
plt.xlabel('x')
plt.ylabel("tanh'(x)")
plt.axhline(0, color='black', lw=0.5, ls='--')
plt.axvline(0, color='black', lw=0.5, ls='--')
plt.grid()
plt.legend()

plt.tight_layout()
plt.show()

                tanh(x)的图像                                                             tanh(x)的梯度图像(该函数导数图像)          

多层感知机从零开始                                                                                                    

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

# 1. 导入数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

# 2. 初始化参数
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(28 * 28, 128)  # 输入层到隐藏层1
        self.fc2 = nn.Linear(128, 64)        # 隐藏层1到隐藏层2
        self.fc3 = nn.Linear(64, 10)         # 隐藏层2到输出层

    def forward(self, x):
        x = x.view(-1, 28 * 28)  # 将28x28的图像展平为784维的向量
        x = torch.relu(self.fc1(x))  # 激活函数
        x = torch.relu(self.fc2(x))  # 激活函数
        x = self.fc3(x)               # 输出层
        return x

model = MLP()

# 3. 激活函数和损失函数
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 4. 训练
num_epochs = 5
for epoch in range(num_epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()  # 清除梯度
        output = model(data)   # 前向传播
        loss = criterion(output, target)  # 计算损失
        loss.backward()        # 反向传播
        optimizer.step()       # 更新参数

        if batch_idx % 100 == 0:  # 每100个batch打印一次信息
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{batch_idx}/{len(train_loader)}], Loss: {loss.item():.4f}')

# 5. 预测
def predict(model, data):
    model.eval()  # 切换到评估模式
    with torch.no_grad():  # 不计算梯度
        output = model(data)
        _, predicted = torch.max(output, 1)  # 获取预测的类
    return predicted

# 使用训练好的模型进行预测
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)

# 获取一些测试数据进行预测
data_iter = iter(test_loader)
images, labels = next(data_iter)
predicted_labels = predict(model, images)

# 可视化预测结果
def visualize(images, labels, predictions):
    plt.figure(figsize=(10, 4))
    for i in range(10):
        plt.subplot(2, 10, i + 1)
        plt.imshow(images[i].squeeze(), cmap='gray')
        plt.title(f'True: {labels[i].item()}\nPred: {predictions[i].item()}')
        plt.axis('off')
    plt.show()

visualize(images, labels, predicted_labels)

多层感知机简洁实现                                                                                                         

import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 数据集导入
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

# 定义多层感知机
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()          # 展平层
        self.fc1 = nn.Linear(28 * 28, 128)  # 隐藏层
        self.relu = nn.ReLU()                # 激活函数
        self.fc2 = nn.Linear(128, 10)        # 输出层

    def forward(self, x):
        x = self.flatten(x)  # 展平
        x = self.fc1(x)      # 隐藏层
        x = self.relu(x)     # 激活函数
        x = self.fc2(x)      # 输出层
        return x

# 模型、损失函数和优化器
model = MLP()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练
num_epochs = 5
for epoch in range(num_epochs):
    for data, target in train_loader:
        optimizer.zero_grad()  # 清除梯度
        output = model(data)   # 前向传播
        loss = criterion(output, target)  # 计算损失
        loss.backward()        # 反向传播
        optimizer.step()       # 更新参数

    print(f'Epoch {epoch + 1}, Loss: {loss.item():.4f}')

欠拟合和过拟合

欠拟合

在训练数据时表现不好,模型太简单

解决方法:

  • 选择一个更复杂的模型,以增加模型的学习能力。
  • 增加模型的参数数量。
  • 延长训练时间,确保模型有足够的时间去学习数据。
  • 尝试不同的特征组合或特征变换,以改善数据的表达性。

过拟合

训练表现很好,泛化能力很弱

解决方法:

        增加数据量:更多的数据可以提供更多的信息,帮助模型学习到更一般的规律,而不是只关注训练数据中的细节。
        正则化:通过在损失函数中添加正则化项(如L1或L2正则化),可以限制模型的复杂度,防止模型学习到过多的细节。
        特征选择:减少特征的数量,只保留对模型预测有用的特征,可以降低模型的复杂度。
        交叉验证:使用交叉验证来选择最优的模型参数,以防止模型在训练数据上过拟合。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 生成合成数据
np.random.seed(42)
X = 5 * np.random.rand(80, 1)
y = np.sin(X).ravel() + np.random.normal(0, 0.1, X.shape[0])

# 将数据转换为DataFrame
data = pd.DataFrame({'X': X.ravel(), 'y': y})

# 拆分数据集
train_size = int(0.8 * len(data))
train_data = data[:train_size]
test_data = data[train_size:]

X_train = train_data[['X']].values
y_train = train_data['y'].values
X_test = test_data[['X']].values
y_test = test_data['y'].values

# 线性模型
def linear_model(X, y):
    X_b = np.c_[np.ones((X.shape[0], 1)), X]  # 添加偏置项
    theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y
    return theta_best

theta_linear = linear_model(X_train, y_train)

# 预测
def predict(X, theta):
    X_b = np.c_[np.ones((X.shape[0], 1)), X]
    return X_b @ theta

y_pred_train_linear = predict(X_train, theta_linear)
y_pred_test_linear = predict(X_test, theta_linear)

# 多项式模型
def polynomial_features(X, degree):
    return np.hstack([X**i for i in range(degree + 1)])

X_poly_train = polynomial_features(X_train, 15)
X_poly_test = polynomial_features(X_test, 15)

theta_poly = linear_model(X_poly_train, y_train)
y_pred_train_poly = predict(X_poly_train, theta_poly)
y_pred_test_poly = predict(X_poly_test, theta_poly)

# 绘制结果
plt.figure(figsize=(14, 6))

# 欠拟合
plt.subplot(1, 2, 1)
plt.scatter(X_train, y_train, color='black', label='Data')
plt.plot(X_train, y_pred_train_linear, color='red', label='Model')
plt.title('Underfitting: Linear Model')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.grid()

# 过拟合
plt.subplot(1, 2, 2)
plt.scatter(X_train, y_train, color='black', label='Data')
plt.plot(X_train, y_pred_train_poly, color='red', label='Model')
plt.title('Overfitting: Polynomial Model')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.grid()

plt.tight_layout()
plt.show()

# 输出均方误差
def mean_squared_error(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

print("Underfitting Train MSE:", mean_squared_error(y_train, y_pred_train_linear))
print("Underfitting Test MSE:", mean_squared_error(y_test, y_pred_test_linear))
print("Overfitting Train MSE:", mean_squared_error(y_train, y_pred_train_poly))
print("Overfitting Test MSE:", mean_squared_error(y_test, y_pred_test_poly))

权重衰减

权重衰减是一种常用的正则化技术,旨在减少模型的过拟合现象。正则化项通常使用L1范数或L2范数来度量,L2范数正则化(也称为权重衰减)是指将模型的权重的平方和添加到损失函数中,乘以一个较小的正则化参数$ \lambda $

对于一个损失函数,权重衰减的实现方式:

正则化参数$ \lambda $的选择对模型的性能有重要影响。较小的$ \lambda $值会导致较强的正则化效果,可能会使模型欠拟合。而较大的$ \lambda $值可能会减少正则化效果,使模型过拟合

import numpy as np
import matplotlib.pyplot as plt

# 生成合成数据
np.random.seed(42)
X = 5 * np.random.rand(80, 1)
y = 2 + 3 * X.ravel() + np.random.normal(0, 0.5, X.shape[0])

# 拆分数据集
train_size = int(0.8 * len(X))
X_train, y_train = X[:train_size], y[:train_size]
X_test, y_test = X[train_size:], y[train_size:]


# 线性回归与权重衰减
def linear_regression_with_weight_decay(X, y, lambda_reg, learning_rate=0.01, n_iterations=1000):
    m, n = X.shape
    theta = np.random.randn(n + 1, 1)  # 初始化权重
    X_b = np.c_[np.ones((m, 1)), X]  # 添加偏置项
    y = y.reshape(-1, 1)  # 确保 y 是二维列向量

    for iteration in range(n_iterations):
        predictions = X_b @ theta
        errors = predictions - y
        gradients = (2 / m) * X_b.T @ errors + lambda_reg * np.vstack(([0], theta[1:]))  # 使用 vstack 确保形状一致
        theta -= learning_rate * gradients  # 直接更新 theta

    return theta


lambda_reg = 0.1
theta = linear_regression_with_weight_decay(X_train, y_train, lambda_reg)


# 预测
def predict(X, theta):
    X_b = np.c_[np.ones((X.shape[0], 1)), X]
    return X_b @ theta


y_pred_train = predict(X_train, theta)
y_pred_test = predict(X_test, theta)

# 绘制结果
plt.scatter(X, y, color='black', label='Data')
plt.plot(X_train, y_pred_train, color='red', label='Model (Weight Decay)')
plt.title('Linear Regression with Weight Decay')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.grid()
plt.show()


# 输出均方误差
def mean_squared_error(y_true, y_pred):
    return np.mean((y_true - y_pred.flatten()) ** 2)


print("Train MSE:", mean_squared_error(y_train, y_pred_train))
print("Test MSE:", mean_squared_error(y_test, y_pred_test))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值