深度学习——多层感知机、欠拟合和过拟合、权重衰减

多层感知机

隐藏层

多层感知机(MLP)通常包括输入层、一个或多个隐藏层以及输出层。输入层接收外部数据,隐藏层对数据进行处理和变换,输出层则产生最终的结果

单隐藏层                                                       多隐藏层

可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制, 使其能处理更普遍的函数关系类型。

激活函数

sigmoid函数

import torch
import matplotlib.pyplot as plt

# 创建自变量x
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)

# 计算y = sigmoid(x)
y = torch.sigmoid(x)

# 绘制sigmoid(x)的图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), y.detach().numpy())
plt.xlabel('x')
plt.ylabel('sigmoid(x)')
plt.title('Sigmoid Activation Function')
plt.grid()
plt.show()

# 清除以前的梯度
if x.grad is not None:
    x.grad.data.zero_()

# 计算y相对于x的梯度
y.backward(torch.ones_like(x), retain_graph=True)

# 绘制sigmoid的梯度图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), x.grad.numpy())
plt.xlabel('x')
plt.ylabel('grad of sigmoid')
plt.title('Gradient of Sigmoid')
plt.grid()
plt.show()

运行结果:

sigmoid(x)的图像                                                 sigmoid(x)的梯度图像(该函数导数图像)

ReLU函数

import torch
import matplotlib.pyplot as plt

# 创建自变量x
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)

# 计算y = relu(x)
y = torch.relu(x)

# 绘制relu(x)的图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), y.detach().numpy())
plt.xlabel('x')
plt.ylabel('relu(x)')
plt.title('ReLU Activation Function')
plt.grid()
plt.show()

# 计算y相对于x的梯度
y.backward(torch.ones_like(x), retain_graph=True)

# 绘制relu的梯度图像
plt.figure(figsize=(5, 2.5))
plt.plot(x.detach().numpy(), x.grad.numpy())
plt.xlabel('x')
plt.ylabel('grad of relu')
plt.title('Gradient of ReLU')
plt.grid()
plt.show()

运行结果:

relu(x)的图像   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值