深度学习---数据操作、矩阵计算、自动求导

 

数据操作:

        shape:访问张量的形状

        numel():访问元素个数

        reshape():改变形状,不改变数量和元素值

        

torch.zeros():生成全0的张量 t

orch.ones():生成全1的张量

torch.tensor():自己赋特定值运算:

运算:+ - * / ** 按元素运算

两个张量的形状不同,可通过广播机制来执行按元素操作 例:x:3x1     y:1x2 相加后得到一个3x2的维度

多个张量连结:

torch.cat((x,y),dim=0)

dim=0:行方向堆叠 t

orch.cat((x,y),dim=1)

dim=1:列方向堆叠

求和:

对x中所有元素求和:x.sum()

数据预处理--数据清洗

缺失值处理:

1)删除记录:当某组中的一个数据据缺失时,删除这个组的数据 2)数据插补:使用不同方法将缺的数据补齐(均值、中位数、众数插补)

矩阵计算:

标量:由一个元素的张量表示

向量:标量值组成的列表,标量值成为向量的元素或分量

矩阵:创建一个3x2的m矩阵,通过m.T转置成2x3的矩阵

对称矩阵:m=m.T

两个矩阵的按元素乘法称为哈达玛积

将张量乘以一个或加上一个标量不会改变张量的形状

B=A.clone():将A赋值给B,分配一个新地址,不会影响A的值(后续如果对B进行操作,则不会影响A的值)

按特定轴求和:指定张量沿哪一个轴来通过求和降低(降维求和)

A=torch.arange(40).reshape(2,5,4)

a=A.sum(axis=1)沿轴1降维,每个矩阵中每一列相加

a=A.sum(axis=2)沿轴2降维,每个矩阵中每一行相加

非降维求和: 沿某个轴计算A元素的累积总和, 可以调用cumsum函数。 不会沿任何轴降低输入张量的维度。

A.cumsum(axis=0)累积计算每列的和

A.cumsum(axis=1)累积计算每行的和

求平均值:

1)A.mean()

2)A.sum()/A.numl()

可以用axis求每一列或每一行的平均值

点积:相同位置元素进行乘积求和

两个向量的点积:torch.dot(x,y)

矩阵-向量积: x:矩阵 y:向量 torch.mv(x,y)

矩阵-矩阵乘法: x,y均为矩阵  torch.mm(x,y)

范数: Frobenius范数是矩阵元素平方和的平方根

L2范数是向量元素平方和的平方根

L1范数是向量元素的绝对值之和 

自动求导:

链式法则

正向累积(从x出发)

反向累积(反向传递–先计算最终的函数即y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值