单招数学知识点主要包括集合与函数概念,以及集合间的基本关系。
关于集合,主要知识点包括:
- 集合元素的特征:确定性、互异性、无序性。
- 集合的性质:任何一个集合是它本身的子集,空集是任何集合的子集,空集是任何非空集合的真子集。n个元素的子集有2^n个,n个元素的真子集有2^n-1个,n个元素的非空真子集有2^n-2个。
- 集合的表示方法:列举法、描述法。
集合间的基本关系包括:
- 一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记为A⊆B。
- 空集是任何集合的子集,记为φ⊆a。
- 空集是任何非空集合的真子集。
对于函数概念部分,主要知识点包括:
- 函数的概念:设x和y是两个变量,D是实数集的某个子集,若对D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数。记为y=f(x)。
- 函数的表示方法:解析法、表格法、图象法。
- 函数的单调性:设函数f(x)的定义域为I,如果对于定义域I内某个区间D内的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数。
- 函数的奇偶性:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意一个自变量x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数;如果对于定义域I内某个区间D上的任意一个自变量x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
以上就是单招数学知识点的主要内容。对于这些知识点,需要深入理解和掌握,才能在考试中取得好成绩。