单招数学知识

本文概述了单招数学中的关键知识点,包括集合的特性、表示方法和子集关系,以及函数的概念、表示、单调性与奇偶性。深入理解这些内容对考试成绩至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单招数学知识点主要包括集合与函数概念,以及集合间的基本关系。

关于集合,主要知识点包括:

  1. 集合元素的特征:确定性、互异性、无序性。
  2. 集合的性质:任何一个集合是它本身的子集,空集是任何集合的子集,空集是任何非空集合的真子集。n个元素的子集有2^n个,n个元素的真子集有2^n-1个,n个元素的非空真子集有2^n-2个。
  3. 集合的表示方法:列举法、描述法。

集合间的基本关系包括:

  1. 一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记为A⊆B。
  2. 空集是任何集合的子集,记为φ⊆a。
  3. 空集是任何非空集合的真子集。

对于函数概念部分,主要知识点包括:

  1. 函数的概念:设x和y是两个变量,D是实数集的某个子集,若对D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数。记为y=f(x)。
  2. 函数的表示方法:解析法、表格法、图象法。
  3. 函数的单调性:设函数f(x)的定义域为I,如果对于定义域I内某个区间D内的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数。
  4. 函数的奇偶性:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意一个自变量x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数;如果对于定义域I内某个区间D上的任意一个自变量x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

以上就是单招数学知识点的主要内容。对于这些知识点,需要深入理解和掌握,才能在考试中取得好成绩。

0011578c78a0c1f8b46d3bb73434a8f4.jpeg

4b0555d4670ffd57a851f436ef92ea53.jpeg

8f3db57efb35ccac17a014397cccb34d.jpeg

d90ec9d3b469412f66a830966e8d0753.jpeg

7b667e2e851d7311849145d7bb87dda9.jpeg

358e6accc81a70529f7841e0341c0618.jpeg

7c7e6d693b19c6b6f3b2846d9416eb77.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值