- 博客(522)
- 资源 (1)
- 收藏
- 关注
原创 SGlang 0.11.0 新特性解析
随着多模态大模型(LMM)成为主流,其在文档理解、图表分析、细粒度视觉问答(VQA)精度墙(Accuracy Wall):通用推理引擎对视觉特征与文本特征的融合处理未达最优,导致复杂图像的理解与推理准确率受限。多样性墙(Diversity Wall):在生成长篇、创造性或需要大量事实回溯的内容时,传统的 TOPK(例如1024)采样限制了模型从更广概率分布中选取最佳 Token 的能力,影响文本的质量与丰富度。vLLM 0.11.0 的解决方案针对 Qwen3-VL 的精度优化。
2026-01-06 18:32:28
5
原创 腾讯 iOA 测评 | 横向移动检测、病毒查杀、外设管控、部署性能
横向渗透防护:可实时捕捉 WMI 等横向执行行为,溯源信息完整漏洞修复与查杀:检测速度快,覆盖面广,漏洞信息直观外设管控:响应及时、策略灵活部署与性能:轻量化,不影响终端日常使用对于缺乏安全团队的中小企业而言,iOA 基础版在易用性、可视化、实战防护三个维度的平衡,让它非常适合作为终端安全建设的第一步。hello,我是是Yu欸。原文链接 👉 ,⚡️更新更及时。欢迎大家点开下面名片,添加好友交流。
2025-12-31 10:16:21
980
2
原创 vLLM 0.11.0 新特性解析:视觉推理精度跃升与长序列性能革新
随着多模态大模型(LMM)成为主流,其在文档理解、图表分析、细粒度视觉问答(VQA)精度墙(Accuracy Wall):通用推理引擎对视觉特征与文本特征的融合处理未达最优,导致复杂图像的理解与推理准确率受限。多样性墙(Diversity Wall):在生成长篇、创造性或需要大量事实回溯的内容时,传统的 TOPK(例如1024)采样限制了模型从更广概率分布中选取最佳 Token 的能力,影响文本的质量与丰富度。vLLM 0.11.0 的解决方案针对 Qwen3-VL 的精度优化。
2025-12-30 22:34:04
79334
144
原创 在昇腾8卡上极限部署 Qwen3-235B MoE
在昇腾 910B 上部署 Qwen3-235B 是一次对硬件极限的挑战。在显存空间仅剩不足 10% 的极限环境下,通过GMM专家融合HCCL AIV 通信加速以及SwiGLU 算子下沉,我们成功搭建起了一个高效、稳定的推理环境,验证了昇腾架构对超大规模 MoE 模型的支持能力。希望这篇博文能帮助更多在昇腾平台上探索大模型前沿的开发者!
2025-12-30 22:32:47
13540
147
原创 昇腾双机16卡部署DeepSeek-V3.2 (W8A8) 实战指南
● 为了避免 CP 模式下各卡计算量不均(序列后端 Token 关注的历史更长),实战方案采用了 Token 对称重排,使得 16 张卡的算力利用率趋于一致,从而优化了整体 TTFT(首字延迟)。:确保 MindIE 的连续批处理功能已开启(默认开启),它能让不同长度的请求穿插执行,减少空等待。通过在容器内开启该功能,能让不同请求的解码与预填充穿插执行,显著降低队列延迟。:在 MindIE 配置文件中,限制最大 Batch Size(例如设置为 32),多余的请求在前端网关排队,避免拖累整个推理引擎。
2025-12-30 22:26:59
13383
145
原创 数字员工:用 TextIn + Coze 构建企业跨国供应链的“知识审计链”
在 2025 年的今天,“数字员工”(Digital Employee)已不再是一个遥不可及的概念。依托于火山引擎 Coze 等低代码平台,企业能够迅速构建出具备推理能力的 Agent。然而,在实际深入业务流——特别是制造业、进出口贸易等实体产业时,我们面临着一个典型的“数据木桶效应”大模型(LLM)的推理能力(Brain)日益强大,但文档解析能力(Eyes)却往往滞后。企业的核心知识大量封存在 PDF、扫描件、图片等非结构化文档中。
2025-12-30 16:20:16
18815
175
原创 基于CANN opbase 的编译构建实战:Ascend Notebook 环境下的踩坑、修复与完整实践
前提准备:GitCode Notebook 环境搭建opbase:环境配置与编译运行验证构建失败的常见错误与我的处理方式修复错误后,build 成功UT 单元测试验证🌈你好呀!我是🌌 在所有感兴趣的领域扩展知识,不定期掉落福利资讯(*^▽^*)
2025-12-29 21:34:51
137389
150
原创 从Ascend C算子开发视角看CANN的“软硬协同”
图注:Ascend C 算子逻辑架构。左侧 Host 负责切分策略(Tiling),右侧 Device (Kernel) 负责计算执行。图片来源:昇腾社区 CANN 8.3 文档当我们谈论“CANN的新架构体验”时,我们实际上是在谈论Ascend C 的 SPMD(单程序多数据)编程模型。这不是替代了CANN原有的架构图,而是将物理硬件的抽象直接映射到了代码逻辑中。Host 侧决定“怎么切”,Device 侧决定“怎么算”。TQue 队列。
2025-12-24 19:34:33
53018
150
原创 扫描网站结构的SEO元数据抓取方案
爬虫API #数据采集 #亮数据 #BrightData #效率工具 #科研 #大数据 #人工智能 #WebScraping #开发者 #数据分析。不设置代理无法抓取数据。是否设置代理都可以抓取数据。将在亮数据中创建的代理对应的字段填入,每次修改配置都需要重新启动。下图中的4个字段是后续尖叫蛙配置代理需要的。欢迎大家点开下面名片,添加好友交流。
2025-12-17 18:50:08
11209
1
原创 【征文计划】智旅无界:Rokid智能眼镜赋能下一代个性化旅游体验开发指南
本文深入探讨如何利用Rokid CXR-M SDK开发一款革命性的旅游攻略智能推荐应用,通过AI+AR技术融合,为用户提供实时、个性化、沉浸式的旅游体验。本文详细解析了SDK核心功能在旅游场景的应用,包括设备连接、AI助手、实时翻译、AR导览等关键技术实现,提供了完整的代码示例和架构设计,为开发者打造下一代智能旅伴应用提供全面指导。通过阅读,读者将掌握如何将传统旅游服务升级为智能化、场景化的沉浸式体验。Rokid Glasses作为一款先进的AI+AR智能眼镜,为解决上述痛点提供了全新的技术路径。
2025-12-17 13:55:14
6028
2
原创 ③【openFuyao 】以开放社区构建算力生态
openFuyao 的长远目标是将其在异构算力抽象、拓扑感知调度上的创新实践,上升为一套被国际认可的。
2025-12-12 20:22:35
579
原创 ③【openFuyao 】以开放社区构建算力生态
openFuyao 的长远目标是将其在异构算力抽象、拓扑感知调度上的创新实践,上升为一套被国际认可的。
2025-12-10 12:29:48
9756
原创 昇腾 910B 部署 vLLM-ascend 实战:从环境踩坑到推理部署
在昇腾 910B 平台上部署 vLLM-ascend 是一项涉及硬件、驱动、Python 版本和框架依赖的系统工程。核心实践经验总结如下环境选择至关重要:必须使用 Python >= 3.9 的环境(如 GitCode 的py3.11镜像)才能满足vllm的版本要求。依赖配置需手动介入:即使在预装 CANN 的镜像中,也需要为venv虚拟环境手动配置 CANN 工具链和环境变量。版本匹配是关键vllm和的版本需要严格匹配,并选择 PyPI 上实际存在的版本(如0.9.1)进行安装。
2025-12-06 00:29:09
11789
2
原创 ④用MateChat 写了一个 AI 修仙模拟器,融合高性能状态管理与叙事终端
AI 修仙模拟器”的案例说明了 DevUI MateChat 不仅仅是一个聊天 UI 库,它是一个高性能、高灵活性的 AI 交互基座,能够驾驭复杂的、有状态的业务场景。它通过组件解耦,将高成本的 UI 渲染工作标准化,使开发者能够将精力投入到对大模型世界观构建和状态转换逻辑等核心算法上。这种基于组件解耦的游戏化范式,为开发者提供了新的学习和协作方式,是 MateChat 推动前端 AI 领域创新的重要一步。hello,我是是Yu欸。原文链接 👉 ,⚡️更新更及时。
2025-11-29 09:00:00
23163
1
原创 ②DevUI MateChat 的生态演进展望,从“单点突破”到“生态共荣”
从“UI 组件”到“生态基座”,DevUI MateChat 的演进之路清晰可见。它通过技术上的解耦,释放了开发者在逻辑层的创造力;通过与华为云的深度联动,确立了在企业级场景的统治力;通过开源开放,奠定了在垂直行业的渗透力。这三大生态的合力,将推动 MateChat 最终从一个“组件库”演进为 AI 交互领域的。
2025-11-28 09:00:00
25138
原创 ③DevUI MateChat 以 UI 标准化,赋能教育智能诊断助手
DevUI MateChat 在教育领域的实践,证明了其作为 AI 交互基座的强大适应性。它通过组件化解决了内容呈现的复杂性(公式、代码),使开发者得以专注于“知识点关联推荐”和“错误类型识别”等核心教学算法。MateChat 的标准化方案,为构建高效率、个性化且具备数据反馈机制的在线智能助教系统提供了坚实的工程基础,为开发者提供了可参考的落地实操案例。hello,我是是Yu欸。原文链接 👉 ,⚡️更新更及时。欢迎大家点开下面名片,添加好友交流。
2025-11-28 09:00:00
21233
原创 ①DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
UI 与逻辑解耦” 的架构提供了极高的工程灵活性。AI 应用的灵魂在于其与大模型 API 的通信逻辑, 这段代码负责处理流式传输、安全代理、多重错误码的健壮性。在原始的 Vue 模板中, 开发者被迫将精力浪费在对 UI 细节的命令式控制上。MateChat 的诞生, 标志着前端开发者有机会从低效的 UI 造轮中解放出来, 将精力 100% 投入到。MateChat 的核心价值在于它提供了一套功能完备的组件, 实现了对开发者手动代码的。MateChat 的价值, 在于将两者进行了清晰的切割。
2025-11-27 21:31:46
21475
原创 100% AI 写的开源项目三周多已获得 800 star 了
ing 项目本身功能是一个集成了 next.js shadcn/ui 底层默认 pgsql 数据库 和 claude code 的一个编程工具,运行在 kubernetes 上,简单来说就是点个按钮直接开始梭哈 claude code, 其他事情 agent 都帮你干了。感觉是个比 supabase 更简单更灵活的方案,因为我不需要按照 supabase 的 SDK 写代码了。
2025-11-27 16:45:41
1057
1
原创 MCP是什么?让AI每次少写100行爬虫代码
本次测评展示了托管抓取平台在面对反爬与动态加载时的可靠性优势,并演示了搭配 Coplit 后的高效验证流程。托管抓取(Bright Data MCP):在 MCP 控制台创建抓取任务,开启必要的渲染与输出选项,使用 MCP 的托管浏览器与网络代理处理页面加载和反爬挑战;将输出以 JSON 形式导出并接入 Coplit 做字段映射与清洗演示。本地爬虫(Python):使用 requests 发起请求并用 BeautifulSoup 解析 DOM,按预期抽取标题、价格、图片等常见字段。
2025-11-24 17:41:53
12296
150
原创 DeepSeek
DevUI MateChat 的技术演进, 是 AI 时代前端开发的必然趋势。它通过标准化的 Vue3 组件(<McLayout><McBubble>)接管了繁琐的 UI“脏活”, 让开发者得以从“重复造轮”中解放, 真正专注逻辑——即专注打磨智能交互核心价值。hello,我是是Yu欸。原文链接 👉 ,⚡️更新更及时。欢迎大家点开下面名片,添加好友交流。
2025-11-24 13:23:19
1159
1
原创 从“拼凑”到“通感”:文心5.0如何让2万亿参数拥有“原生直觉”?
从拼凑时代的“勉强沟通”到文心5.0的“原生通感”,多模态AI终于推倒了那座阻碍理解的“巴别塔”。在这个11月,我们看到的不仅是参数的军备竞赛,更是AI认知能力的一次集体觉醒。如果你也想体验一下这种“被AI读懂”的感觉,文心5.0 Preview版已经在文心App、千帆API平台上线了,支持全模态输入。去试试吧,扔给它一段你最喜欢的电影长镜头,看看它能不能读懂那些导演藏在光影和沉默里的潜台词。hello,我是是Yu欸。原文链接 👉 ,⚡️更新更及时。欢迎大家点开下面名片,添加好友交流。
2025-11-14 15:41:36
57869
原创 仓颉迁移实战:将 Node.js 微服务移植到 Cangjie 的工程化评测
这次迁移实践让我们对仓颉有了更立体的认识。它已经具备了成为工程化后端语言的关键能力:首先是可交付性。仓颉能够编译为单一原生二进制文件,这意味着在部署时,我们不再需要再目标机器上安装繁重的运行时环境(如 Node.js 或 JVM),极大地简化了运维流程。其次是可控性。静态类型系统和显式的 I/O 控制,虽然在开发初期增加了编码负担,但迫使我们在编码阶段就必须思考边界条件和潜在错误。从长期维护的角度来看,这种“前期投资”有利于提升系统的整体稳定性。
2025-11-14 12:16:39
56981
2
原创 从所有权到“无畏”并发:Rust 核心范式与 Tokio 实战解析
Rust 的学习曲线是真实存在的,它要求开发者在编译期就必须思考在 C++/Java/Go 中可以“推迟”到运行时的问题。所有权和生命周期不是束缚,而是编译期的免费安全分析器。模式匹配和Result不是繁琐,而是杜绝未处理异常的保险网。tokio中的move闭包也不是巧合,而是上述所有安全契约在“并发”这一终极考场上的完美应用。通过在语言层面强制实现资源的安全管理,Rust 真正地让开发者能够“无所畏惧”地编写出高性能、高可靠的并发系统。hello,我是是Yu欸。
2025-11-14 09:00:00
44028
原创 Rust 异步编程实战:手把手搭建 Tokio 服务器
这个tokio示例清晰地表明,Rust 的“学习曲线”(所有权、生命周期)并不是学术上的“象牙塔”,而是构建高可靠并发系统的“安全带”。这一行代码的背后,是所有权(move)、生命周期(防止悬垂引用)和 Trait(Send)的协同工作。编译器在编译期为你处理了所有 C++ 和 Go 开发者必须在运行时(通过 Mutex、Channel 或肉眼)担心的内存安全和数据竞争问题。当你点击“编译”通过时,你就已经消除了整整一个类别的并发 Bug。hello,我是是Yu欸。原文链接 👉 ,⚡️更新更及时。
2025-11-13 21:23:59
40234
原创 Rust 并发实战:从零构建一个内存安全的“番茄时钟”
它迫使开发者在编码阶段就厘清资源的所有权归属。虽然初学时会觉得与借用检查器(Borrow Checker)“搏斗”很痛苦,但一旦代码编译通过,你获得的将是一个极其健壮、无内存泄漏、且并发安全的程序。在日益复杂的现代软件工程中,这种“编译期的信心”是无价的。未来的演进方向:异步化 (Async/Await):如果我们需要同时管理数万个番茄钟(例如做成在线服务),当前的“一任务一线程”模型可能会遭遇瓶颈。此时可以引入Tokio运行时,用轻量级的Task代替操作系统线程。TUI 界面:使用ratatui。
2025-11-13 21:10:03
53682
原创 Rust 实战:300行代码写一个“不卡顿”的命令行番茄钟
写一个命令行工具不难,但写一个能同时做两件事的命令行工具,就没那么简单了。今天我们用 Rust 挑战一个经典需求:番茄钟。传统的实现方式是,你输入 start,程序就进入 sleep 循环,这 25 分钟里你的终端就废了,什么都干不了。而我们今天要实现的这个,总共 300 行代码,不仅能后台静默计时,还能同时让你继续添加任务、查询状态、甚至导出报表。它怎么做到‘既轻量又丝滑’的?直接看东西。
2025-11-12 20:34:21
38746
原创 从“巨石”到“积木”:CANN的“解耦”开源对开发者意味着什么?
如果这个“蓝图”的决策权,依然牢牢掌握在华为内部,那么所谓的“解耦”和“开源”,就依然是一场“一个公司的玩具,而不是一个社区的工具”的“KPI开源”。这就是“解耦”带来的最大挑战,它。
2025-11-12 11:13:41
20476
141
原创 【gpt-oss-20b】一次 20B 大模型的私有化部署评测
如何利用新兴的 Serverless GPU 平台,以极低的成本实现 20B 大模型的高性能(175 t/s)私有化部署。通过对比 API、自建服务器与云 GPU 三种方案的真实成本与性能,提供一个新的算力选择思路。
2025-11-10 17:00:22
13507
151
原创 【博资考5】网安2025
2025博资考,和 @shandianchengzi 一起复盘完成。其中,前三题 每题各选一个方向完成即可。题目为大方向,具体细节可能略有区别。
2025-11-03 13:38:13
886
4
原创 【教程】5分钟搞定arXiv文献数据 (附代码+分析)
5分钟完成了arXiv文献数据的抓取和可视化分析**(生成了词云图和研究趋势图📈),视频里我将完整展示 **从API调用 -> 数据处理 -> 可视化分析** 的全过程,并附上关键代码。
2025-10-27 17:15:52
10514
150
原创 【仓颉语言】原生智能、全场景与强安全的设计哲学
从上述分析可以看出,仓颉语言并非对现有语言的简单缝合,而是一次雄心勃勃的范式革新。它试图在单一语言的框架内,同时解决智能编程的复杂度异构系统的适配性和可信系统的安全性三大世界级难题。作为一名关注前沿技术的研究者,我认为仓颉的设计哲学是清晰且极具前瞻性的。然而,语言的成功不仅在于其设计的精妙,更在于其生态的构建工具链的完善(调试器、IDE、编译器性能)以及社区的活跃度。仓颉目前还处于早期阶段,但它所描绘的蓝图——一个原生智能、全景安全、开发高效的鸿蒙生态——无疑是令人振奋的。
2025-10-22 20:56:51
722
2
原创 OCR的“文艺复兴”:实测登顶HuggingFace的PaddleOCR-VL与DeepSeek-OCR
它是一个非常棒的学术探索:它是一个产业级的SOTA解决方案。不愧是中国OCR技术的老大哥,它目标很务实,就是在复杂多变的真实场景中,把文档解析做到极致。它继承了PaddleOCR开源5年、GitHub超5万Star(唯一Star数超50k的中国OCR项目)、累计下载超900万的深厚积累,这不是一个新玩具,是一个身经百战的成熟系统。这说明PaddleOCR早已是这个领域的基础设施。所以:如果你要发论文、探索新方向,DeepSeek的思路值得一看;
2025-10-22 19:55:22
1764
原创 【AI视频】从单模型,到AI Agent工作流
回到最初的问题,CrePal为我们这些跟技术打交道的人,解决了什么痛点?从“手搓脚本”到“智能编排”:它用Agent取代了我们编写的“胶水代码”,自动化处理了多模型协同。从“开盲盒”到“精准调优”:通过和这类功能,它提供了宝贵的精细化控制能力。从“推倒重来”到“敏捷迭代”:极大地降低了修改和迭代的成本,让快速验证创意成为可能。Sora2和KLING们负责提供更强大的“发动机”,而CrePal这样的Agent平台,则致力于打造一辆性能优越、易于驾驶的“智能汽车”。
2025-10-14 19:41:29
8112
59
原创 【保姆级教程】VS Code + Roo Code + Bright Data Web MCP:解决大模型知识过时问题,为AI编码助手赋予实时联网与数据抓取能力
摘要: 本文介绍如何在VS Code中为免费AI编码助手Roo Code集成Bright Data的Web MCP服务器,解决大语言模型(LLM)知识滞后问题。通过配置实时联网功能,AI助手可进行网页搜索、数据提取和API交互,显著提升开发效率。教程涵盖环境准备、插件安装及实战测试全流程,适合开发者扩展AI工具能力。 关键词: VS Code, AI助手, Roo Code, Bright Data, 实时联网
2025-09-26 09:54:16
13734
31
原创 【水印指标】10%and1%FPR,alongsideTPR,TNR,FPR,FNR,P,R,F1, ACC
本文介绍了水印检测系统的性能评估指标,分为两类:1)在特定假正例率(FPR)下的指标,强调通过调整阈值控制误报率(如1%FPR)时的检测能力;2)核心性能指标,包括真正例率(TPR)、真负例率(TNR)、假正例率(FPR)、假负例率(FNR)、精确率(P)、召回率(R)、F1分数和准确率(ACC)。这些指标通过垃圾邮件过滤器的类比进行解释,帮助理解不同场景下衡量系统性能的关键参数。
2025-09-26 09:51:29
215
原创 【服务器挂掉了】A40和A800:“性能不足”和“系统崩溃”
请放心,你的NVIDIA A40 显卡本身的能力是绰绰有余的。这次的“服务器崩溃”事件,是一次典型的由硬件变更引发的软件兼容性问题。问题几乎可以 100% 确定是出在软件层面(驱动、内核、残留配置)没有与新硬件正确适配。记住,在进行重大的硬件更换后,尤其是像 GPU 这样的核心组件,最佳实践永远是为新硬件提供一个干净、匹配的软件环境。执行一次彻底的驱动重装,是解决这类问题的最快路径。hello,我是是Yu欸。原文链接 👉 ,⚡️更新更及时。欢迎大家点开下面名片,添加好友交流。
2025-09-17 20:11:47
1087
1
原创 【报错】更改notebook外的py文件后,需要重启notebook文件,因为会记住import文件
更改notebook外的py文件后,需要重启notebook文件,因为会记住import文件
2025-09-10 20:13:16
166
服务器python通过JDBC连接到位于Linux远程服务器上的Oracle数据库
2024-06-05
一键式Excel分词统计工具
2024-01-25
蓝桥杯python组时全部的代码及结果,供时间不太够的同学冲击省一
2022-05-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅