个人理解
在我看来二叉树其实是非常底层的数据结构,很多stl函数里的核心其实都是二叉树的结构,例如map、set等,说实话我对于二叉树的理解还不是很深,只是简单掌握一些二叉树的运用方法,下面讲讲我的理解:
1、二叉树的种类:满二叉树(所有结点全部 填满,数量为2的n次方减一)、完全二叉树(最底层的结点不用填满,但必须先填满左结点)、二叉搜索树(有值的二叉树)、平衡二叉搜索树(左右子树的高度差不超过1的二叉搜索树)
2、二叉树的储存方式:容器储存(数组)、链式储存
3、二叉树的遍历方式:前序遍历(DFS,中左右)、后序遍历(DFS,左右中)、中序遍历(DFS,左中右)、层序遍历(BFS)
4、二叉树的定义
struct TreeNode{
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x): val(x), left(NULL), right(NULL) {}
}
递归法
题目
144、145、94:列出二叉树的前中后序递归遍历方法
思考
其实递归法还是比较简单的,核心思想就是卡尔老师所列举遍历方式(中左右、左中右、左右中)的不通,并且首先要判断一下node是否为空即可
代码
下面列出前序遍历的代码,中序和后序只要将递归那一行的代码变换位置即可
// 递归法
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
vec.push_back(cur->val); // 中
traversal(cur->left, vec); // 左
traversal(cur->right, vec); // 右
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};
迭代法
题目
144、145、94:列出二叉树的前中后序迭代遍历方法
思考
迭代法的核心思想是创建一个stack,stack里存放的数据是TreeNode,当node指向左时就push左node,指向右时就push右node,当node指向中间时就pop出来将其值储存在结果数组里,但中序遍历有些许不同,它是要将左结点一直push,直到遇到空结点再返回遍历右结点,另外还需要注意的是stack是LIFO的结构,那么我们储存node的顺序需要反着来
代码
下面列出前序遍历的统一迭代法代码,中序和后序只要将stack push(node)那一行的代码变换位置即可
// 统一写法
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> stk;
vector<int> res;
// 必须先判断root是否为空,很重要
if (root == NULL) return res;
stk.push(root);
while(!stk.empty()) {
TreeNode* node = stk.top();
if(node != NULL) {
stk.pop();
if(node->right) stk.push(node->right); //右
if(node->left) stk.push(node->left);//左
stk.push(node);//中
stk.push(NULL);//前中后序遍历stk.push(NULL)永远紧跟在stk.push(node)之后
}
else {
stk.pop();//需要先将NULL pop出来
node = stk.top();
stk.pop();
res.push_back(node->val);
}
}
return res;
}
};