【C语言】堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:


1. 建堆
升序:建大堆
降序:建小堆

原因分析:

若升序建小堆时间复杂度是O(N^2)

升序建大堆,时间复杂度O(N*logN)

所以升序建大堆,降序建小堆


2. 利用堆删除思想来进行排序


建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

代码实现

#include<stdio.h>

//交换函数
void Swap(int* px, int* py)
{
	int tmp = *px;
	*px = *py;
	*py = tmp;
}
//向下调整算法
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapSort(int* a, int n)
{
	//建堆
    //n-1最后一个节点,(n - 1 - 1) / 2是n-1的父亲节点
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}
int main()
{
	int a[] = { 0,4,3,6,7,8,1 };
	HeapSort(a, sizeof(a) / sizeof(int));
	return 0;
}

运行结果

若是建小堆则只需要把向下调整中的>改成<,修改后如下

if (child + 1 < n && a[child + 1] < a[child])
{
	child++;
}
if (a[child] < a[parent])
{
	Swap(&a[child], &a[parent]);
	parent = child;
	child = child * 2 + 1;
}

运行结果

当然我们也可以先写一个堆的数据结构再进行堆排序,但是这显然不如上面的快速且节省空间

自主实现数据结构堆再进行堆排序

代码实现

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
#include<string.h>


typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;
//初始化
void HPArrayInit(HP* hp, HPDataType* a, int n);
//销毁
void HPDestroy(HP* hp);
// 堆的插入
void HPPush(HP* hp, HPDataType x);
// 堆的删除
void HPPop(HP* hp);
// 取堆顶的数据
HPDataType HPTop(HP* hp);
// 堆的数据个数
int HPSize(HP* hp);
// 堆的判空
int HPEmpty(HP* hp);
//向上调整算法
void Adjustup(HPDataType* a, int child);
//向下调整算法
void AdjustDown(HPDataType* a, int n, int parent);


void HPArrayInit(HP* hp, HPDataType* a, int n)
{
	assert(hp);
	hp->a = (HPDataType*)malloc(sizeof(HPDataType) * n);
	if (hp->a == NULL)
	{
		perror("malloc fail");
		return;
	}
	memcpy(hp->a, a, n * sizeof(HPDataType));
	hp->size = hp->capacity = n;
	//向上调整,建堆时间复杂度O(N*logN)
	for (int i = 1; i < hp->size; i++)
	{
		Adjustup(hp->a, i);
	}
	//向下调整,建堆时间复杂度O(N)
	for (int i = (hp->size - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(hp->a, hp->size, i);
	}
}
//销毁
void HPDestroy(HP* hp)
{
	assert(hp);
	hp->size = hp->capacity = 0;
	free(hp->a);
	hp->a = NULL;
}
//交换函数
void Swap(HPDataType* px, HPDataType* py)
{
	HPDataType tmp;
	tmp = *px;
	*px = *py;
	*py = tmp;
}
//向上调整算法
void Adjustup(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;//找原本父亲的父亲下标
		}
		else
		{
			break;
		}
	}
}
// 堆的插入
void HPPush(HP* hp, HPDataType x)
{
	assert(hp);
	//扩容
	if (hp->size == hp->capacity)
	{
		int newcapacity = hp->capacity == 0 ? 4 : 2 * hp->capacity;
		HPDataType* tmp = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		hp->a = tmp;
		hp->capacity = newcapacity;
	}
	hp->a[hp->size++] = x;
	Adjustup(hp->a, hp->size - 1);
}
//向下调整算法
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] < a[child])
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
// 堆的删除
void HPPop(HP* hp)
{
	assert(hp);
	assert(hp->size > 0);
	Swap(&hp->a[0], &hp->a[hp->size - 1]);

	hp->size--;
	AdjustDown(hp->a, hp->size, 0);
}
// 取堆顶的数据
HPDataType HPTop(HP* hp)
{
	assert(hp);
	return hp->a[0];
}
// 堆的数据个数
int HPSize(HP* hp)
{
	assert(hp);
	return hp->size;
}
// 堆的判空
int HPEmpty(HP* hp)
{
	assert(hp);
	return hp->size == 0;
}
void HeapSort(int* a, int n)
{
	HP hp;
	HPArrayInit(&hp, a, n);
	int i = 0;
	while (!HPEmpty(&hp))
	{
		a[i++] = HPTop(&hp);//将堆顶数据放入数组中
		HPPop(&hp);//再已放入数组中的堆顶数据删除
	}
	HPDestroy(&hp);
}
int main()
{
	int a[] = { 60,70,65,50,32,100 };
	HeapSort(a, sizeof(a) / sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); i++)
	{
		printf("%d ", a[i]);
	}
	return 0;
}

运行结果

欢迎各位大佬一起学习交流~

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值