一.图的存储方式和基本算法
1.1 邻接矩阵的存储方式和基本算法
1.图有两种主要的存储结构,分别是邻接矩阵和邻接表
2.邻接矩阵的存储方法
- 无权图的矩阵存储
- 带权图的存储
2.有如下图我们可以看出,无向图的邻接矩阵关于主对角线呈轴对称
3.邻接矩阵的存储类型定义如下
#define MAXV <最大顶点个数>
typedef struct //声明顶点类型
{
int no; //顶点编号
Infotype info; //顶点的其他信息
}VertexType;
typedef struct //声明邻接矩阵类型
{
int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数、边数
VertexType vexs[MAXV]; //存放顶点信息
}MatGraph;
4.邻接矩阵
- 优点
- 缺点:浪费空间,浪费时间(当此时的图为稀疏图时,使用邻接矩阵会浪费大量时间)
1.2 邻接表的存储方式
1.邻接表的构建
2.图的邻接表存储方法是一种顺序分配与链式分配相结合的存储方法,在表中包含了两类结点,分别为头结点和邻接结点,如下图所示
3.邻接表具有以下特点
4.图的邻接表的存储类型定义如下所示
typedef struct
{
int adjvex; //该边的终点编号
struct ANode *nextarc; //指向下一条边的指针
Infotype weight; //边的权重
}ArcNode;
typedef struct //头结点类型定义
{
Vertex data; //顶点信息
ArcNode *firstarc; //指向第一条边
}VNode;
typedef struct
{
VNode adjlist[MAXV]; //邻接表
int n,e; //图中的顶点数和边数
}AdjGraph;
引用头结点:G->adjlist[i]
引用头结点的指针域:G->adjlist[i].firstarc
5.逆邻接表:与邻接表正好相反,逆邻接表中的头结点指向的第一条边是其他顶点指向自己的边
6.邻接表的特点
7.邻接表与邻接矩阵
- 一个图的邻接矩阵表示唯一,邻接表表示可能不唯一
- 邻接矩阵占用的存储空间大小只与图中的顶点数有关,而与边数无关
1.3 图的基本运算
1.创建图
void CreateAdj(AdjGraph *&G,int A[MAXV][MAXV],int n,int e)
{
int i,j;
ArcNode *p;
G=(AdjGraph *)malloc(sizeof(AdjGraph));
for(i=0;i<n;i++)
{
G->adjlist[i].firstarc=NULL;
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(A[i][j]!=0&&A[i][j]!=INF)
{
p=(ArccNode *)malloc(sizeof(ArcNode));
p->adjvex=j;
p->weight=A[i][j];
p->nextarcc=G->adjlist[i].firstarc; //采用头插法插入结点p
G->adjlist[i].firstarc=p;
}
}
}
G->n=n;
G->e=e;
}
2.输出图
void DispAdj(AdjGraph *G)
{
int i;
ArcNode *p;
for(i=0;i<G->n;i++)
{
p=G->adjlist[i].firstarc;
printf("%3d:",i);
while(p!=NULL)
{
printf("%3d[%d]->",p->adjvex,p->weight);
p=p->nextarc;
}
printf("NULL\n");
}
}
3.销毁图
void DestroyAdj(AdjGraph *&G)
{
int i;
ArcNode *pre,*p;
for(i=0;i<G->n;i++)
{
pre=G->adjlist[i].firstarc;
if(pre!=NULL)
{
p=pre->nextarc;
while(p!=NULL)
{
free(pre);
pre=p;
p=p->nextarc;
}
}
}
free(G);
}