C---语言---计算平均值

int main() {
    int sum = 0;
    int num;
    float average;

    printf("请输入10个数字:\n");

    // 循环读取10个数字,并计算它们的总和
    for (int i = 0; i < 10; i++) {
        scanf("%d", &num);
        sum += num;
    }

    // 计算平均值
    average = sum / 10.0;

    printf("这10个数字的平均值是:%f\n", average);

    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PSO-LSSVM模型是一种融合了PSO算法和LSSVM模型的预测模型,应用在时间序列预测、信号分析和图像识别等领域具有很好的应用前景。下面是用R语言编写PSO-LSSVM模型的代码: 首先,导入所需的包:kernlab, mlbench, ggplot2, caret, e1071, forecast。 ```R library(kernlab) library(mlbench) library(ggplot2) library(caret) library(e1071) library(forecast) ``` 其次,读取数据(使用UCI公开数据集中的“电力需求”数据集作为例子)。为了更好的验证模型的预测结果,我们将原始数据集按7:3划分训练集和测试集。 ```R data("ElectricDemand") x <- ElectricDemand[, c("date", "hour", "nswprice", "nswdemand")] x$date <- as.Date(x$date, "%m/%d/%Y") x$year <- format(x$date, "%Y") x$month <- format(x$date, "%m") x$dayofweek <- format(x$date, "%w") x$weekofyear <- format(x$date, "%U") x$hour <- as.numeric(x$hour) head(x) # 按7:3比例划分训练集和测试集 part <- createDataPartition(x$nswdemand, p = 0.7, list = FALSE, times = 1) train <- x[part, ] test <- x[-part, ] ``` 然后,定义PSO-LSSVM模型的训练函数。这里我们使用径向基函数(RBF)作为核函数,使用PSO算法来优化LSSVM模型中的权重参数。其中,第1个参数X是训练数据的自变量,第2个参数Y是训练数据的因变量,第3个参数C是惩罚参数,第4个参数g为RBF函数的参数。 ```R pso_lssvm <- function(X, Y, C, g){ # 定义LSSVM模型 model <- ksvm(X, Y, kernel = "rbfdot", kpar = list(sigma = g), C = C) # 计算训练误差 y_pred <- predict(model, X) error <- mean((y_pred - Y)^2) # 返回模型和训练误差 return(list(model = model, error = error)) } # 测试一下模型函数 pso_lssvm(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, 1, 0.1) ``` 接着,定义PSO算法函数。其中,第1个参数f是要优化的函数,第2个参数lb和ub为每个维度的范围,第3个参数size为种群大小,第4个参数maxiter为最大迭代次数。 ```R pso <- function(f, lb, ub, size, maxiter){ # 初始化粒子位置和速度 dim <- length(lb) x <- runif(size = size * dim, min = lb, max = ub) v <- runif(size = size * dim, min = -abs(ub - lb), max = abs(ub - lb)) # 记录粒子历史最优位置和函数值 p <- x fbest <- apply(x, MARGIN = 1, f) pbest <- x # 记录全局最优位置和函数值 gbest <- p[which.min(fbest), ] fgbest <- f(gbest) # 开始迭代 for (i in 1:maxiter) { # 更新速度和位置 v <- 0.8 * v + 0.2 * (p - x) * rnorm(size * dim) x <- p + v # 处理越界的位置 x[x < lb] <- lb[x < lb] x[x > ub] <- ub[x > ub] # 计算新的函数值 fx <- apply(x, MARGIN = 1, f) # 更新历史最优位置和函数值 idx <- fx < fbest if (sum(idx) > 0) { p[idx, ] <- x[idx, ] fbest[idx] <- fx[idx] pbest[idx, ] <- x[idx, ] } # 更新全局最优位置和函数值 j <- which.min(fbest) if (fbest[j] < fgbest) { gbest <- p[j, ] fgbest <- fbest[j] } } # 返回粒子历史最优位置和函数值,以及全局最优位置和函数值 return(list(pbest = pbest, fbest = fbest, gbest = gbest, fgbest = fgbest)) } # 测试一下PSO算法函数 pso(function(x) sum(x^2), c(-1, -1), c(1, 1), 50, 100)$fgbest ``` 最后,结合上述函数,定义PSO-LSSVM模型的交叉验证函数。其中,第1个参数X是训练数据的自变量,第2个参数Y是训练数据的因变量,第3个参数k为交叉验证折数,第4、5个参数c_range和g_range分别是惩罚参数C和RBF函数参数g的搜索范围。 ```R pso_lssvm_cv <- function(X, Y, k, c_range, g_range){ # 定义交叉验证函数 set.seed(1) folds <- createFolds(Y, k = k) fold_error <- rep(0, k) for (i in 1:k) { # 分割训练集和验证集 train_idx <- unlist(folds[-i]) valid_idx <- folds[[i]] X_train <- X[train_idx, ] Y_train <- Y[train_idx] X_valid <- X[valid_idx, ] Y_valid <- Y[valid_idx] # 定义PSO函数 f <- function(x) pso_lssvm(X_train, Y_train, C = x[1], g = x[2])$error lb <- c(c_range[1], g_range[1]) ub <- c(c_range[2], g_range[2]) # 使用PSO算法来搜索C和g的最优值 pso_result <- pso(f, lb, ub, size = 50, maxiter = 100) best_c <- pso_result$gbest[1] best_g <- pso_result$gbest[2] # 用最优的C和g值训练模型,并计算验证误差 model <- ksvm(X_train, Y_train, kernel = "rbfdot", kpar = list(sigma = best_g), C = best_c) y_pred <- predict(model, X_valid) fold_error[i] <- mean((y_pred - Y_valid)^2) } # 返回交叉验证误差的平均值 return(mean(fold_error)) } # 测试一下交叉验证函数 pso_lssvm_cv(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, k = 3, c_range = c(0.1, 10), g_range = c(0.1, 1)) ``` 最终,我们可以使用以上定义的函数来训练PSO-LSSVM模型,并预测测试集中的需求量。这里我们通过网格搜索法来确定PSO-LSSVM模型的最优参数,其中C和g的搜索范围分别为0.1到10和0.1到1。 ```R # 确定惩罚参数C和RBF函数参数g的最优值 c_range <- seq(0.1, 10, by = 0.1) g_range <- seq(0.1, 1, by = 0.1) cv_error <- sapply(c_range, function(c) sapply(g_range, function(g) pso_lssvm_cv(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, k = 3, c_range = c(c, c), g_range = c(g, g)))) optimal_c <- c_range[which.min(cv_error)] optimal_g <- g_range[which.min(cv_error)] cat("The optimal C is:", optimal_c, "\n") cat("The optimal g is:", optimal_g, "\n") ggplot(data = data.frame(c_range, g_range, cv_error = as.vector(cv_error)), aes(x = c_range, y = g_range, fill = cv_error)) + geom_tile() + scale_fill_gradient(low = "white", high = "steelblue") + xlab("C") + ylab("g") + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), axis.line = element_line(colour = "black"), legend.position = "bottom") # 训练最终的模型 model <- ksvm(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, kernel = "rbfdot", kpar = list(sigma = optimal_g), C = optimal_c) # 预测测试集 y_pred <- predict(model, test[, c("nswprice", "dayofweek", "hour")]) # 计算测试误差 test_error <- mean((y_pred - test$nswdemand)^2) cat("The test error is:", test_error, "\n") # 绘制预测结果图表 ggplot(data = rbind(train, test), aes(x = date, y = nswdemand, colour = ifelse(date < min(test$date), "training", "testing"))) + geom_line() + scale_colour_manual(values = c("training" = "black", "testing" = "red")) + ggtitle(paste("PSO-LSSVM Model with", length(train), "training data and", length(test), "testing data")) + xlab("Date") + ylab("Demand") ``` 这份代码涵盖了PSO算法、LSSVM模型、交叉验证以及网格搜索等多个步骤,可以应用于PSO-LSSVM模型的训练和预测。需要注意的是,PSO算法和LSSVM模型都有一些超参数需要调整,这里只是提供了一些范例参数,具体应用时需要根据具体数据集来调整参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值