[NOIP2016 普及组] 回文日期
题目背景
NOIP2016 普及组 T2
题目描述
在日常生活中,通过年、月、日这三个要素可以表示出一个唯一确定的日期。
牛牛习惯用 8 8 8 位数字表示一个日期,其中,前 4 4 4 位代表年份,接下来 2 2 2 位代表月份,最后 2 2 2 位代表日期。显然:一个日期只有一种表示方法,而两个不同的日期的表 示方法不会相同。
牛牛认为,一个日期是回文的,当且仅当表示这个日期的 8 8 8 位数字是回文的。现在,牛牛想知道:在他指定的两个日期之间包含这两个日期本身),有多少个真实存在的日期是回文的。
一个 8 8 8 位数字是回文的,当且仅当对于所有的 i i i( 1 ≤ i ≤ 8 1 \le i \le 8 1≤i≤8)从左向右数的第 i i i 个数字和第 9 − i 9-i 9−i 个数字(即从右向左数的第 i i i 个数字)是相同的。
例如:
- 对于 2016 年 11 月 19 日,用 8 8 8 位数字 20161119 20161119 20161119 表示,它不是回文的。
- 对于 2010 年 1 月 2 日,用 8 8 8 位数字 20100102 20100102 20100102 表示,它是回文的。
- 对于 2010 年 10 月 2 日,用 8 8 8 位数字 20101002 20101002 20101002 表示,它不是回文的。
每一年中都有 12 12 12 个月份:
其中, 1 , 3 , 5 , 7 , 8 , 10 , 12 1, 3, 5, 7, 8, 10, 12 1,3,5,7,8,10,12 月每个月有 31 31 31 天; 4 , 6 , 9 , 11 4, 6, 9, 11 4,6,9,11 月每个月有 30 30 30 天;而对于 2 2 2 月,闰年时有 29 29 29 天,平年时有 28 28 28 天。
一个年份是闰年当且仅当它满足下列两种情况其中的一种:
- 这个年份是 4 4 4 的整数倍,但不是 100 100 100 的整数倍;
- 这个年份是 400 400 400 的整数倍。
例如:
- 以下几个年份都是闰年: 2000 , 2012 , 2016 2000, 2012, 2016 2000,2012,2016。
- 以下几个年份是平年: 1900 , 2011 , 2014 1900, 2011, 2014 1900,2011,2014。
输入格式
两行,每行包括一个 8 8 8 位数字。
第一行表示牛牛指定的起始日期。
第二行表示牛牛指定的终止日期。
保证 d a t e 1 \mathit{date}_1 date1 和 d a t e 2 \mathit{date}_2 date2 都是真实存在的日期,且年份部分一定为 4 4 4 位数字,且首位数字不为 0 0 0。
保证 d a t e 1 \mathit{date}_1 date1 一定不晚于 d a t e 2 \mathit{date}_2 date2。
输出格式
一个整数,表示在 d a t e 1 \mathit{date}_1 date1 和 d a t e 2 \mathit{date}_2 date2 之间,有多少个日期是回文的。
样例 #1
样例输入 #1
20110101
20111231
样例输出 #1
1
样例 #2
样例输入 #2
20000101
20101231
样例输出 #2
2
提示
【样例说明】
对于样例 1,符合条件的日期是 20111102 20111102 20111102。
对于样例 2,符合条件的日期是 20011002 20011002 20011002 和 20100102 20100102 20100102。
【子任务】
对于 60 % 60 \% 60% 的数据,满足 d a t e 1 = d a t e 2 \mathit{date}_1 = \mathit{date}_2 date1=date2。
AC代码:
#include<iostream>
#include<cstring>
using namespace std;
int year1, year2;
int from, to, z;
int a[8], b[8];
int l[5], r[5];
int c[13] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
//int check(int x)
//{
// memset(l, 0, sizeof l);
// int k = 0;
// while(x){
// l[k ++] = x % 10;
// x /= 10;
// }//存月份和日看是否合理
// if(l[0] * 10 + l[1] <= 12 && l[0] * 10 + l[1] >= 1 && c[l[0] * 10 + l[1]] >= l[2] * 10 + l[3]) return 1;
// else return 0;
//}
//int check1(int x)
//{
// memset(l, 0, sizeof l);
// int k = 0;
// while(x){
// l[k ++] = x % 10;
// x /= 10;
// }//存月份和日看是否合理
// int t = l[0] * 1000 + l[1] * 100 + l[2] * 10 + l[3];
// if(l[0] * 10 + l[1] <= 12 && l[0] * 10 + l[1] >= 1 && c[l[0] * 10 + l[1]] >= l[2] * 10 + l[3] && t <= z) return 1;
// else return 0;
//}
int main()
{
cin >> from >> to;
int cnt = 0;
int k1 = 8, k2 = 8;
// for(int i = x; i <= y; i ++)
// {
// if(check(i) && i != y) cnt ++;
// if(i == y && check1(i))
// {
// cnt ++;
// }
// }
for(int i = 1; i <= 12; i ++)
{
for(int j = 1; j <= c[i]; j ++)
{
int s = 0;
year1 = 1000 * (i / 10) + 100 * (i % 10) + 10 * (j / 10) + j % 10;
year2 = year1;
int t = 1000;
while(year2){
s += (year2 % 10)* t;
year2 /= 10;
t /= 10;
}
int ss = s * 10000 + year1;
if(ss >= from && ss <= to) cnt ++;
}
}
cout << cnt << endl;
return 0;
}