算法进阶指南第一题 a^b

【模板】快速幂

题目描述

给你三个整数 a , b , p a,b,p a,b,p,求 a b   m o d   p a^b \bmod p abmodp

输入格式

输入只有一行三个整数,分别代表 a , b , p a,b,p a,b,p

输出格式

输出一行一个字符串 a^b mod p=s,其中 a , b , p a,b,p a,b,p 分别为题目给定的值, s s s 为运算结果。

样例 #1

样例输入 #1

2 10 9

样例输出 #1

2^10 mod 9=7

提示

样例解释

2 10 = 1024 2^{10} = 1024 210=1024 1024   m o d   9 = 7 1024 \bmod 9 = 7 1024mod9=7

数据规模与约定

对于 100 % 100\% 100% 的数据,保证 0 ≤ a , b < 2 31 0\le a,b < 2^{31} 0a,b<231 a + b > 0 a+b>0 a+b>0 2 ≤ p < 2 31 2 \leq p \lt 2^{31} 2p<231

模板题看代码即可:

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, int>PII;
const int N=3e5+10;
const int MOD=9901;
const int INF=0X3F3F3F3F;
const int dx[]={-1,1,0,0,-1,-1,+1,+1};
const int dy[]={0,0,-1,1,-1,+1,-1,+1};
const int M = 1e6 + 10;

//快速幂

int t;

ll ksm(ll a, ll b, ll p)
{
	ll res = 1;
	while(b){
		if(b & 1) res = res * a % p;
		a = a * a % p;
		b >>= 1;
	}
	return res % p;
}
int main()
{
	ll a, b, p;
	cin >> a >> b >> p;
	cout << ksm(a, b, p) << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值