【模板】快速幂
题目描述
给你三个整数 a , b , p a,b,p a,b,p,求 a b m o d p a^b \bmod p abmodp。
输入格式
输入只有一行三个整数,分别代表 a , b , p a,b,p a,b,p。
输出格式
输出一行一个字符串 a^b mod p=s
,其中
a
,
b
,
p
a,b,p
a,b,p 分别为题目给定的值,
s
s
s 为运算结果。
样例 #1
样例输入 #1
2 10 9
样例输出 #1
2^10 mod 9=7
提示
样例解释
2 10 = 1024 2^{10} = 1024 210=1024, 1024 m o d 9 = 7 1024 \bmod 9 = 7 1024mod9=7。
数据规模与约定
对于 100 % 100\% 100% 的数据,保证 0 ≤ a , b < 2 31 0\le a,b < 2^{31} 0≤a,b<231, a + b > 0 a+b>0 a+b>0, 2 ≤ p < 2 31 2 \leq p \lt 2^{31} 2≤p<231。
模板题看代码即可:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int>PII;
const int N=3e5+10;
const int MOD=9901;
const int INF=0X3F3F3F3F;
const int dx[]={-1,1,0,0,-1,-1,+1,+1};
const int dy[]={0,0,-1,1,-1,+1,-1,+1};
const int M = 1e6 + 10;
//快速幂
int t;
ll ksm(ll a, ll b, ll p)
{
ll res = 1;
while(b){
if(b & 1) res = res * a % p;
a = a * a % p;
b >>= 1;
}
return res % p;
}
int main()
{
ll a, b, p;
cin >> a >> b >> p;
cout << ksm(a, b, p) << endl;
return 0;
}