题目描述
在 W 星球上有 n 个国家。为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通。但是每个国家的国王都很吝啬,他们只愿意修建恰好 n−1 条双向道路。
每条道路的修建都要付出一定的费用,这个费用等于道路长度乘以道路两端 的国家个数之差的绝对值。例如,在下图中,虚线所示道路两端分别有 22 个、44 个国家,如果该道路长度为 11,则费用为 1×∣2−4∣=21×∣2−4∣=2。图中圆圈里的数字表示国家的编号。
由于国家的数量十分庞大,道路的建造方案有很多种,同时每种方案的修建费用难以用人工计算,国王们决定找人设计一个软件,对于给定的建造方案,计算出所需要的费用。请你帮助国王们设计一个这样的软件。
输入格式
输入的第一行包含一个整数 n,表示 W 星球上的国家的数量,国家从 1 到 n 编号。
接下来 n–1 行描述道路建设情况,其中第 i 行包含三个整数 ai,bi 和 ci,表示第 i 条双向道路修建在 ai 与 bi 两个国家之间,长度为 ci。
输出格式
输出一个整数,表示修建所有道路所需要的总费用。
输入输出样例
输入 #1
6 1 2 1 1 3 1 1 4 2 6 3 1 5 2 1
输出 #1
20
说明/提示
对于 100% 的数据,1<=ai,bi<=n,0<=ci<=106,2<=n<=106。
测试点编号 | n= |
---|---|
1 | 2 |
2 | 10 |
3 | 100 |
4 | 200 |
5 | 500 |
6 | 600 |
7 | 800 |
8 | 1000 |
9 | 104 |
10 | 2×104 |
11 | 5×104 |
12 | 6×104 |
13 | 8×104 |
14 | 105 |
15 | 6×105 |
16 | 7×105 |
17 | 8×105 |
18 | 9×105 |
19,20 | 106 |
思路
无根变树有根树,一条边的两边的点的数量分别等于终点子节点的数量+1和起点母节点的数量。我们可以通过遍历整棵树将每个子节点的数量预处理出来。
在预处理的同时可以进行统计。到最后输出h就可以
#include<bits/stdc++.h>
using namespace std;
long long v[2000005]={0},w[2000005]={0},f[1000005]={0},t[2000005]={0},s[1000005]={0},c[2000005]={0},n,e=0,h=0;
void o(int x,int y,int z)
{
v[++e]=y;
w[e]=z;
t[e]=f[x];
f[x]=e;
}
void b(int x,int a)
{
int i;
s[x]=1;
for(i=f[x];i!=0;i=t[i])
if(v[i]!=a)
{
b(v[i],x);
s[x]+=s[v[i]];
}
}
void g(int x,int a)
{
int i;
for(i=f[x];i!=0;i=t[i])
if(v[i]!=a)
{
c[i]=(long long)w[i]*(long long)abs(n-s[v[i]]*2);
g(v[i],x);
}
}
int main()
{
int x,y,z;
cin>>n;
for(int i=1;i<n;i++)
{
cin>>x>>y>>z;
o(x,y,z);
o(y,x,z);
}
b(1,0);
g(1,0);
for(int i=1;i<=e;i++)h+=c[i];
cout<<h;
return 0;
}
如有错误,欢迎大家评论区指出!感谢!